Pigments of fungi. Part 68. ${ }^{1}$ Synthesis and absolute configuration of thysanone ${ }^{2}$

Christopher D. Donner and Melvyn Gill *
School of Chemistry, The University of Melbourne, Victoria 3010, Australia
Received (in Cambridge, UK) 17th December 2001, Accepted 15th February 2002 First published as an Advance Article on the web 7th March 2002

The $(1 R, 3 S)$-absolute stereochemistry of thysanone $\mathbf{1}$, a fungal benzoisochromanquinone with potent human rhinovirus 3C-protease inhibitory activity, is established for the first time by total synthesis of the natural product from ethyl (S)-lactate and CD comparison with authentic material.

Thysanone $\mathbf{1}$ is a yellow, crystalline benzoisochromanquinone that was isolated from solid-state fermentations of the fungus Thysanophora penicilloides by chemists at Merck Sharp \& Dohme during a screening programme aimed at the eventual control, or cure, of the common cold. ${ }^{3}$ Thysanone 1 shows potent activity $\left(\mathrm{IC}_{50}: 13 \mu \mathrm{~g} \mathrm{ml}{ }^{-1}\right)$ against human rhinovirus (HRV) 3C-protease, one of a family of picornaviruses that are responsible, inter alia, for afflictions such as polio, hepatitis A and foot-and-mouth disease. ${ }^{4}$ The structure 1 (or its enantio$m e r$) for thysanone was reported by Singh et al. from the spectroscopic data and a single crystal X-ray analysis of the methyl acetal derivative $2 .{ }^{3}$ With the exception of our preliminary communication, ${ }^{2}$ there has been no subsequent discussion in the literature of either the absolute configuration or the synthesis of thysanone. We report here full details of the total synthesis of ($1 R, 3 S$)-thysanone 1, beginning from ethyl (S) lactate 8. Direct spectroscopic and $C D$ comparison of the synthetic and the natural materials and their respective methyl acetals establishes unequivocally the $(1 R, 3 S)$-absolute configuration 1 for natural thysanone.

$1 \mathrm{R}=\mathrm{H}$
$2 R=M e$

Results and discussion

We recently reported the synthesis of both of the enantiomers of the natural product 8-hydroxy-3-methyl-3,4-dihydro-1 H -2-benzopyran-1-one (mellein) 6 beginning from the appropriate stereoisomer of propylene oxide $7 .{ }^{5}$ Our concept for the extension of this chemistry from (S)-mellein 6 to $(1 R, 3 S)$-thysanone $\mathbf{1}$ via a bromobenzoquinone such as $\mathbf{3}, \mathbf{4}$ or $\mathbf{5}$ is shown retrosynthetically in Scheme 1. Our first task was therefore to prepare workable quantities of (S)-mellein 6. Although both the (R) and (S)-enantiomers of propylene oxide are available commercially they are both very expensive commodities and a more economic alternative was to prepare (S)-propylene oxide 7 , $[a]_{\mathrm{D}}-18.7\left(c 0.24, \mathrm{CCl}_{4}\right)$ in 38% yield over three steps from readily available, and cheap, ethyl (S)-lactate $8 .{ }^{6,7}$ Subsequently, (S)-propylene oxide 7 was transformed into (S)-mellein $6,[a]_{\mathrm{D}}$ $+101\left(c 0.67, \mathrm{CHCl}_{3}\right)$ over 6 steps and in 22% overall yield by the method that we have described earlier. ${ }^{5}$

Scheme 1 Retrosynthesis of $(1 S, 3 R)$-thysanone from ethyl (S)-lactate via (S)-propylene oxide.

Our first synthetic approach to ($1 R, 3 S$)-thysanone $\mathbf{1}$ involved the labile benzoquinone lactone 3 (Scheme 2) as an intermediate. To synthesise the quinone 3, (S)-mellein 6 was first treated with bromine in dichloromethane at room temperature to afford (S)-5-bromomellein $9, \mathrm{mp} 96-97{ }^{\circ} \mathrm{C}$ (86% yield). The ${ }^{1} \mathrm{H}$ NMR spectrum of bromomellein 9 contains a pair of ortho-coupled aromatic proton doublets ($J 9.0 \mathrm{~Hz}$) consistent with the presence of a single bromine atom. The location of the bromine atom at C 5 rather than C 7 in $\mathbf{9}$ is evident from the effect of the halogen atom on the chemical shift of the signals from the C 4 methylene protons. Thus, in the ${ }^{1} \mathrm{H}$ NMR spectrum of (S)-mellein 6 the C4 protons appear as a tight, two proton multiplet at $\delta 3.00$. In contrast, the signals from these protons in the spectrum of $\mathbf{9}$ appear as a well resolved pair of double doublets centred at $\delta 2.80(J 17.0$ and 11.7 Hz$)$ and $3.19(J 17.0$ and 3.3 Hz)
Extended exposure of mellein $\mathbf{6}$ or its 5-bromo derivative 9 to bromine in dichloromethane did not lead to any 5,7-dibromomellein 10. However, when either 6 or 9 was treated, individually, with N-bromosuccinimide, the new dibromo derivative 10 was obtained in both cases in near quantitative yield. The

9

10
molecular formula $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{3}$ for 10 was established by combustion analysis and the presence in the mass spectrum of a molecular ion cluster at $m / z 334 / 336 / 338$ with the isotope pattern of an ion containing two bromine atoms. The ${ }^{1} \mathrm{H}$ NMR spectrum of (S)-5,7-dibromomellein $\mathbf{1 0}$ contains only one aromatic proton signal ($\delta 7.92$), together with signals from a chelated hydroxy proton ($\delta 11.88$), a C-methyl group ($\delta 1.58$, $J 6.4 \mathrm{~Hz}$) and an ABX couplet with components centred at $\delta_{\mathrm{A}} 2.78(\mathrm{dd}, J 17.1$ and 11.7 Hz$), \delta_{\mathrm{B}} 3.18(\mathrm{dd}, J 17.1$ and 3.2 Hz$)$ and $\delta_{\mathrm{x}} 4.73(\mathrm{~m})$.

In our first attempt to oxidize 5,7-dibromomellein $\mathbf{1 0}$ to the corresponding quinone 3 an aqueous solution of cerium(IV) ammonium nitrate was added to $\mathbf{1 0}$ in acetonitrile at room temperature. The solution, which darkened rapidly, subsequently assumed a deep orange colour that quickly faded in colour and finally lead to a complex mixture of products. When the reaction time was restricted to two minutes and the temperature reduced to $0^{\circ} \mathrm{C}$ the quinone $\mathbf{3}$ was obtained as a yellow oil that was, nevertheless, still difficult to purify further. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ includes a singlet at $\delta 7.42$, consistent with the presence of a quinonoid methine proton, an ABX couplet with components centred at $\delta 2.52$ (dd, $J 19.1$ and 11.6 Hz), $\delta 3.02(\mathrm{dd}, J 19.1$ and 3.1 Hz$)$ and $\delta 4.60(\mathrm{~m})$ arising from the C 4 methylene group and C3 methine proton, respectively. The C3 methine signal is also coupled to the protons of the C3 methyl group that appears at $\delta 1.53(\mathrm{~d}, J 6.3 \mathrm{~Hz})$. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}$ includes three carbonyl carbon signals ($\delta 158.6$, 173.8 and 182.7) consistent with the proposed structure Despite the inherent instability of the quinone $\mathbf{3}$ its potential as a dienophile in cycloaddition reactions was explored by its exposure, without further purification, to 1,3-dimethoxy-1trimethylsilyloxybutadiene $\mathbf{1 1}$ prepared according to Brassard's method. ${ }^{8}$

The presence of strategically placed halogen substituents in benzo- and naphthoquinone dienophiles has been used extensively to control the regiochemical outcome of their DielsAlder reactions with oxygenated butadienes. ${ }^{8-10}$ On that basis a successful cycloaddition between the diene 11 and the benzoquinone 3 should lead predominantly to the naphthoquinone 13 after aromatisation of the initial cycloadduct(s). The oxygenation pattern in the naphthoquinone 13, albeit at a

13
different oxygenation level, accords with that in thysanone $\mathbf{1}$. Unfortunately, when the diene $\mathbf{1 1}$ and the benzoquinone $\mathbf{3}$ were brought together in dichloromethane at $-30{ }^{\circ} \mathrm{C}$ a mixture of two isomeric products was obtained, neither of which corresponded to the desired quinone 13. The products proved inseparable by chromatography but a ratio of $4: 1$ for the two constituents of the mixture could be determined by integration of selected signals in the ${ }^{1} \mathrm{H}$ NMR spectrum. The signals due to the major component, to which we assign the structure $\mathbf{1 4}$ (Fig. 1), include a methyl proton doublet ($J 6.3 \mathrm{~Hz}$) at $\delta 1.46$,

Fig. 1 Selected HMBC and NOE correlations in the adduct 14.
methylene proton resonances at $\delta 1.69(\mathrm{dd}, J 14.6$ and 12.2 Hz$)$ and $2.31(\mathrm{dd}, J 14.6$ and 2.6 Hz$)$, a methine proton multiplet at $\delta 5.03$ and a chelated hydroxy proton singlet at $\delta 13.65$ but it did not contain the necessary pair of meta-coupled aromatic signals expected for 13. Instead, signals characteristic of an olefinic proton ($\delta 5.13$), two methoxy groups ($\delta 3.52$ and 3.63) and a pair of diastereotopic methylene protons ($\delta 2.50$ and 4.05, each d, $J 12.4 \mathrm{~Hz}$) were observed. The ${ }^{13} \mathrm{C}$ NMR spectrum of the major product 14 contains sixteen discrete signals including three carbonyl resonances $(\delta 167.4,169.8$ and 196.9) and a mass spectrum that leads to the molecular formula $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{BrO}_{7}$ $(\mathrm{m} / \mathrm{z} 401 / 403)$. The formation of Michael adducts such as $\mathbf{1 4}$ is not uncommon in such systems, especially when the quinonoid dienophile is extremely electrophilic. ${ }^{8}$ In the present case Michael attack at C4a in $\mathbf{3}$ by $\mathbf{1 1}$ would lead to $\mathbf{1 4}$ or an alternative tautomer. Both tautomers are consistent with the ${ }^{1} \mathrm{H}$ and

(relative stereochemistry only)

Scheme 2 Synthesis of (\pm)-pyranobenzoquinone 5 via the $\left(1 R^{*}, 3 S^{*}\right)$-lactol 20. Reagents and conditions: i, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$; ii, $\mathrm{Me}_{2} \mathrm{SO}_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, acetone, reflux; iii, DIBAL-H, toluene, $-60^{\circ} \mathrm{C}$ to rt; iv, $\mathrm{NaBH}_{4}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, 30^{\circ} \mathrm{C}$ or $\mathrm{Et}_{3} \mathrm{SiH}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H},-70^{\circ} \mathrm{C}$ to rt; v, $\mathrm{CAN}, \mathrm{MeCN}, \mathrm{H}_{2} \mathrm{O}, \mathrm{rt}$.
${ }^{13} \mathrm{C}$ NMR data but the identity of the major product, including the double bond geometry and the relative stereochemistry, as 14 was deduced from the results of HMBC, HMQC and NOE experiments that are summarised in Fig. 1. The adduct $\mathbf{1 4}$ might arise by direct Michael addition of the diene $\mathbf{1 1}$ to the benzoquinone $\mathbf{3}$ or, alternatively, by way of the Diels-Alder cycloadduct 15 followed by a retro-Claisen reaction. ${ }^{11}$ The latter mechanism would help to explain the (E)-geometry in the $2^{\prime}, 3^{\prime}$ double bond in 14.

15

16

17

The electrophilicity of the C4a-C8a double bond in the quinone 3 obviously stems from its position between the lactone and quinonoid carbonyl groups and, as a result, it is much more dienophilic than the C6-C7 double bond. Consequently, we briefly investigated the prospect of temporarily masking the $\mathrm{C} 4 \mathrm{a}-\mathrm{C} 8 \mathrm{a}$ bond prior to exploiting the bromoquinone system. Two approaches were explored, neither of them successful. Firstly, we tried to generate the $\mathrm{C} 4 \mathrm{a}-\mathrm{C} 8 \mathrm{a}$ epoxide $\mathbf{1 6}$ by treating the benzoquinone 3 with m-chloroperoxybenzoic acid. Unfortunately, all attempts to purify the unstable epoxide $\mathbf{1 6}$ led to extensive decomposition and afforded only an unworkably low yield of $\mathbf{1 6}$. Next, we treated $\mathbf{3}$ with cyclopentadiene ${ }^{12}$ and, while the quinone 3 was clearly being consumed (as monitored by TLC) all attempts to isolate the adduct 17 were unsuccessful.

Having failed to engage the quinone $\mathbf{3}$ in a Diels-Alder reaction we next explored the temporary masking of the lactone carbonyl group by reduction to the corresponding lactol 4, or better still, the pyran 5 levels. There is ample precedent that, once removed, oxygenation in the form of a hydroxy or a carbonyl group could be re-introduced at C1 later in the sequence without difficulty. ${ }^{13,14}$ Accordingly, two separate routes to the pyranobenzoquinone 5 were explored.

Synthesis of the (\pm)-pyranobenzoquinone 5 via the bromolactol 20

Our first attempt to reduce the lactone carbonyl group in the unstable (\pm)-benzoquinone 3 by using diisobutylaluminium hydride was not successful. Consequently, the quinone $\mathbf{3}$ was first converted to the quinol dimethyl ether 19 (63% yield over two steps), mp 146-147 ${ }^{\circ} \mathrm{C}$, as shown in Scheme 2. The formula $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrO}_{4}$ for the new benzoisocoumarin 19 was established by a combination of combustion analysis and mass spectrometry and is supported by the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data (Experimental). The (\pm)-leucomethyl ether 19 was reduced to the lactol 20, mp $138-139^{\circ} \mathrm{C}$, in 94% yield with diisobutylaluminium hydride at low temperature. The infra-red spectrum of $\mathbf{2 0}$ showed hydroxy absorption at $3328 \mathrm{~cm}^{-1}$ but no absorption due to a carbonyl group. The electrospray mass spectrum of $\mathbf{2 0}$ contains an ion cluster at $m / z 285 / 287$ corresponding to $\left[\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrO}_{4}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$. The relative stereochemistry at C 1 and C 3 in the lactol 20 was evident from the ${ }^{1} \mathrm{H}$ NMR spectrum, which consisted of a
single set of resonances that includes a new one proton singlet at $\delta 6.15$ due to H 1 . The configuration at C 1 in $\mathbf{2 0}$ is controlled by the anomeric effect, ${ }^{15}$ and the ${ }^{1} \mathrm{H}$ NMR data that support this will be discussed in more detail in due course.

The (\pm)-lactol $\mathbf{2 0}$ was not purified further but rather was reduced by using either sodium borohydride (70% yield) or triethylsilane (83%) in the presence of trifluoroacetic acid at low temperature to give the benzopyran 21 . The ${ }^{1} \mathrm{H}$ NMR spectrum of the new benzopyran 21 contains geminally coupled doublets $(J 15.9 \mathrm{~Hz})$ with components centred at $\delta 4.69$ and 4.97 due to the protons of the new C 1 methylene group. The rest of the ${ }^{1} \mathrm{H}$ NMR spectrum is in full accord with the structure 21.

Finally, oxidative demethylation of the benzopyran 21 by using cerium(Iv) ammonium nitrate in aqueous acetonitrile gave the (\pm)-pyranobenzoquinone 5 in 79% yield. The quinone 5 showed carbonyl absorptions at 1659,1647 and $1583 \mathrm{~cm}^{-1}$ in the infra-red spectrum and the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, both of which will be discussed in more detail later, are in complete accord with the quinone structure 5 .

Synthesis of the (S)-pyranobenzoquinone 5 via the dibromolactol 23

During the development of the chemistry described above we recognised an alternative and potentially more efficient approach to the quinone 5 commencing from (S)-5,7-dibromomellein 10 that would avoid the troublesome intermediate 3 .

Thus, methylation of the phenolic hydroxy group in (S)-5,7dibromomellein $\mathbf{1 0}$ with dimethyl sulfate (Scheme 3) gave the methyl ether 22, $[a]_{\mathrm{D}}+147\left(c 1.17, \mathrm{CHCl}_{3}\right)$, in 98% yield as colourless needles, $\mathrm{mp} 87-90{ }^{\circ} \mathrm{C}$. The molecular formula $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{3}$ of the ether $\mathbf{2 2}$ followed from combustion analysis and electrospray mass spectrometry, which shows a pseudomolecular ion cluster at $m / z 349 / 351 / 353$. Importantly, in the ${ }^{1} \mathrm{H}$ NMR spectrum of 22 a three proton singlet at $\delta 3.97$ appears due to the new C8 methoxy group. All other signals are in accord with the structure 22 (Experimental).
The methyl ether $\mathbf{2 2}$ was reduced in 95% yield to the ($1 R, 3 S$)lactol 23 with diisobutylaluminium hydride at $-70^{\circ} \mathrm{C}$. The lactol $\mathbf{2 3}$ was isolated as a colourless, crystalline solid, mp 156-159 ${ }^{\circ} \mathrm{C},[a]_{\mathrm{D}}+8.24\left(c 1.00, \mathrm{CHCl}_{3}\right)$. The combination of combustion analysis and mass spectrometry confirmed the molecular formula $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{O}_{3}$. In the ${ }^{1} \mathrm{H}$ NMR spectrum of 23 there is a three proton singlet at $\delta 3.94$ that was assigned to the aromatic methoxy group, an aromatic proton singlet at $\delta 7.75$ and a methine proton signal that appears as a doublet $(J 3.6 \mathrm{~Hz})$ at δ 6.16. The multiplicity of the signal from H 1 is due to coupling with the C 1 hydroxy proton, which itself resonates as a broad doublet at $\delta 2.96$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the lactol 23 consist of only one set of resonances, consistent with the presence of a single diastereoisomer.
The ($1 R, 3 S$)-absolute stereochemistry of the lactol $\mathbf{2 3}$ was established as follows. In the ${ }^{1} \mathrm{H}$ NMR spectrum of 23 the benzylic methylene protons at C 4 resonate at $\delta 2.35$ and 2.76 as double doublets with coupling constants (Table 1) that are characteristic of a trans-diaxial relationship between H3 and the axial proton at C 4 in the half-chair conformation shown in Fig. 2a. This conformation is supported by NOE correlations (Fig. 2) between the C3 methyl group, H3 and both of the C4 protons and between H 3 and $\mathrm{H}_{e q} 4$. Significantly, there is no NOE between H 3 and H 1 in 23, as would be expected to be the case in these systems when H1 and H3 are trans disposed (see Fig. 2b discussed below). These results place the C 1 hydroxy group in $\mathbf{2 3}$ in an axial configuration, favoured by the anomeric effect, ${ }^{15}$ and defines the stereochemistry of $\mathbf{2 3}$ as $(1 R, 3 S)$.
Importantly, when a solution of the $(1 R, 3 S)$-lactol 23 in deuteriochloroform was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy over five days, new signals gradually developed due to formation of the epimeric lactol 26. These new signals include a three proton doublet $(J 6.1 \mathrm{~Hz})$ at $\delta 1.50$, methoxy and aromatic

Table $1{ }^{1} \mathrm{H}$ NMR data ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) from the protons of the pyran ring in the lactols $\mathbf{2 3}, \mathbf{2 6}, 20$ and $\mathbf{1}$

	Chemical shift (δ), multiplicity and coupling constant (J / Hz)			
Nucleus	$\mathbf{2 3}$	$\mathbf{2 6}$	$\mathbf{2 0}$	$\mathbf{1}$
H 1	$6.16, \mathrm{~d}, 3.6$	$6.25, \mathrm{~s}$	$6.15, \mathrm{~s}$	$6.05, \mathrm{~s}$
H 3	$4.43, \mathrm{~m}$	$4.67, \mathrm{~m}$	$4.38, \mathrm{~m}$	$4.36, \mathrm{~m}$
$3-\mathrm{Me}$	$1.40, \mathrm{~d}, 6.1$	$1.50, \mathrm{~d}, 6.1$	$1.38, \mathrm{~d}, 6.3$	$1.40, \mathrm{~d}, 6.4$
$\mathrm{H}_{a x} 4$	$2.35, \mathrm{dd}, 17.4$ and 11.4	$2.41, \mathrm{dd}, 17.3$ and 11.7	$2.25, \mathrm{dd}, 17.5$ and 11.6	$2.24, \mathrm{dd}, 19.6$ and 11.1
$\mathrm{H}_{e q} 4$	$2.76, \mathrm{dd}, 17.4$ and 3.3	$2.83, \mathrm{dd}, 17.3$ and 3.7	$2.73, \mathrm{dd}, 17.5$ and 3.4	$2.75, \mathrm{dd}, 19.6$ and 3.2

Scheme 3 Synthesis of (S)-pyranobenzoquinone 5 via the ($1 R, 3 S$)-lactol 23. Reagents and conditions: $\mathrm{i}, \mathrm{Me}_{2} \mathrm{SO}_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, acetone, reflux; ii, DIBAL-H, toluene, $-70^{\circ} \mathrm{C}$; iii, NaBH_{4}, TFA, THF, $30^{\circ} \mathrm{C}, 1 \mathrm{~h}$ or $\mathrm{Et}_{3} \mathrm{SiH}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, 0^{\circ} \mathrm{C}$ to rt; iv, $\left(\mathrm{PhCH}_{2} \mathrm{Se}_{2}\right.$, NaBH_{4}, DMF, reflux, 1 h ; v, CAN, $\mathrm{MeCN}, \mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 0.5 \mathrm{~h}$.

Fig. 2 Nuclear Overhauser enhancement in the ${ }^{1} \mathrm{H}$ NMR spectra of (a) the ($1 R^{*}, 3 S^{*}$)-lactols 20, 23 and $\mathbf{1}$, and (b) the ($1 S^{*}, 3 S^{*}$)-lactol 26.
singlets at $\delta 3.84$ and $\delta 7.71$, respectively, a methine proton multiplet at $\delta 4.67$ and signals from the C 4 methylene protons at $\delta 2.41$ and 2.83 . NOE experiments with the lactol 26 (Fig. 2b) show strong correlation between H 1 and H 3 thus confirming their cis-1,3-diaxial relationship. Epimerisation of the $(1 R, 3 S)$ lactol 23 presumably takes place via the corresponding aldehyde catalysed by traces of deuterium chloride in the solvent. The $(1 S, 3 S)$-lactol 26, in which both the C 1 hydroxy and C 3 methyl groups are in an equatorial configuration should be favoured thermodynamically.

26

27

Reduction of the ($1 R, 3 S$)-lactol 23 to the (S)-benzopyran 24 was achieved by using either sodium borohydride (92% yield) or triethylsilane (98%) in the presence of trifluoroacetic acid. The resulting pyran $24,[\alpha]_{\mathrm{D}}+85.8\left(c 1.00, \mathrm{CHCl}_{3}\right)$, was obtained as colourless needles, $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{O}_{2}$, mp $73-75^{\circ} \mathrm{C}$. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 4}$ the methylene protons at C 1 appear as doublets
$(J 16.3 \mathrm{~Hz})$ at $\delta 4.66$ and 4.97 while the C 4 methylene protons give rise to signals at $\delta 2.44$ and 2.71 forming part of an ABX system with the C 3 methine proton ($\delta 3.70$).

Conversion of the (S)-pyran 24 to the desired chiral pyranobenzoquinone 5 first required cleavage of the phenolic methyl ether. To this end, treatment of the ether 24 with a mixture of dibenzyl diselenide and sodium borohydride in dimethylformamide at reflux gave the free (S)-phenol 25 in 86% yield. Spectroscopic data (Experimental) are fully consistent with the formula shown.

Other attempts to cleave the aromatic methyl ether group in 24 using reagents such as aluminium chloride, ${ }^{16}$ hydrobromic acid in acetic acid ${ }^{17}$ and iodotrimethylsilane ${ }^{18}$ were unsuccessful. On the other hand, boron tribromide ${ }^{19}$ cleaved the pyran ring in 24 and, if used in excess, led to the benzylic bromide 27.

Oxidation of the (S)-phenol 25 with cerium(IV) ammonium nitrate in aqueous acetonitrile gave the new (S)-pyranobenzoquinone 5 as yellow crystals, $\mathrm{mp} 100-103{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}+195(c 0.64$, CHCl_{3}) in 93% yield. The structure was unequivocally established, as shown, from the spectroscopic data. Thus, the electronic spectrum shows absorption maxima at 212 and 273 nm , consistent with a benzoquinone chromophore ${ }^{20}$ and, in the infra-red spectrum strong absorptions occur at 1658,1647 and $1590 \mathrm{~cm}^{-1}$. In turn, the ${ }^{1} \mathrm{H} N \mathrm{NR}$ spectrum of 5 contains a singlet at $\delta 7.26$ due to the quinonoid methine proton, a doublet $(J 6.3 \mathrm{~Hz})$ at $\delta 1.34$ due to the C 3 methyl group, which is itself coupled to H3 ($\delta 3.63$). The C 4 methylene protons resonate at $\delta 2.20$ (dddd, $J 19.2,10.0,4.3,2.7 \mathrm{~Hz}$) and 2.58 (ddd, $J 19.2,3.4$, 2.9 Hz) as the AB component of an ABX pattern with H 3 while the new C 1 methylene protons resonate as geminally coupled doublets $(J 18.7 \mathrm{~Hz})$ at $\delta 4.41\left(\mathrm{H}_{a x} 1\right)$ and $4.71\left(\mathrm{H}_{e q} 1\right)$. The C 1 methylene protons are also coupled allylically with the protons at C4.

This approach to the (S)-pyranobenzoquinone 5, via the ($1 R, 3 S$)-lactol 23, gives this pivotal intermediate in 73% yield over five steps from the mellein derivative 10. This may be favourably compared with the earlier approach via the ($1 R^{*}, 3 S^{*}$)-lactol 20 that gave the same pyranobenzoquinone,
albeit in isochiral form, in 38% yield over six steps from (\pm)-5,7dibromomellein 10. The comparison is summarised diagrammatically in Scheme 4.

Scheme 4 Alternate routes from 5,7-dibromomellein 10 to the novel pyranobenzoquinone 5.

Diels-Alder cycloaddition reactions involving the pyranobenzoquinone 5

Diels-Alder cycloaddition between the (\pm)-pyranobenzoquinone 5 and 1,3-dimethoxy-1-trimethylsilyloxybutadiene $\mathbf{1 1}$ in toluene at reflux gave a single orange crystalline compound 28, mp $161-162^{\circ} \mathrm{C}$, in 42% yield. The mass spectrum of this compound exhibits a molecular ion at $m / z 274$ which, together with combustion analysis data, led to the molecular formula $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5}$. The electronic spectrum contains absorption maxima at $218,268,285$ and 429 nm , indicating a naphthoquinone (rather than a benzoquinone) chromophore. ${ }^{20}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of 28 includes a signal at $\delta 12.13$ due to a chelated phenolic hydroxy proton, meta-coupled aromatic doublets $(J 2.4 \mathrm{~Hz})$ centred at $\delta 6.62$ and 7.19 and a three proton singlet at $\delta 3.90$, fully consistent with the presence of the appended A ring in 28.

$28 R=M e$
$29 \mathrm{R}=\mathrm{H}$

30

Significantly, the pyranonaphthoquinone 28 contains the complete carbon skeleton of thysanone 1 . The requirement for synthesis of thysanone itself was thence to cleave the $7-O$ methyl ether and hydroxylate the pyran ring. Surprisingly, all attempts to cleave the C7 methyl ether in 28 were unsuccessful and to circumvent this unexpected stumbling block we turned to 1-methoxy-1,3-bis(trimethylsilyloxy)buta-1,3-diene $\mathbf{1 2}$ as the diene component in a cycloaddition reaction with 5 .

The diene $\mathbf{1 2}$ was prepared in 46% yield in two steps from methyl acetoacetate according to the method of Yamamoto. ${ }^{21}$ Diels-Alder reaction between the diene $\mathbf{1 2}$ and the (S)-pyranobenzoquinone 5 was achieved by heating the components together in toluene at reflux. Aromatization of the cycloadduct(s) with silica gel and chromatography gave the (S) pyranonaphthoquinone 29 in 73% yield as yellow crystals, $\operatorname{mp} 171-173{ }^{\circ} \mathrm{C},[a]_{\mathrm{D}}+160(c 0.28, \mathrm{MeOH})$. The new quinone 29
exhibits spectroscopic properties in full accord with the assigned structure. Thus, the mass spectrum contains a molecular ion at $\mathrm{m} / \mathrm{z} 260$, which by high resolution mass measurement led to the molecular formula $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5}$. The electronic spectrum contains absorptions at 219, 270, 290 and 429 nm , consistent with a naphthoquinone chromophore, ${ }^{20}$ whilst the ${ }^{13} \mathrm{C}$ NMR spectrum contains fourteen signals that include two quinonoid carbonyl carbon resonances ($\delta 183.2$ and 187.6). The ${ }^{1} \mathrm{H}$ NMR spectrum of 29 , which is summarised diagrammatically in Fig. 3 confirms the composition of the peripheral A and C rings

Fig. $3{ }^{1} \mathrm{H}$ NMR data ($400 \mathrm{MHz}, d_{6}$-acetone) and selected INEPT correlations for the pyanonaphthoquinone 29.
in the quinone and their relative orientation was established from the results of 1D-INEPT NMR experiments (Fig. 3). Most importantly, they reveal long range ${ }^{1} \mathrm{H}^{-13} \mathrm{C}$ correlation between (i) the C 5 carbonyl carbon ($\delta 183.2$) and both H6 ($\delta 7.01$) and $\mathrm{H}_{e q} 4(\delta 2.64)$ and (ii) the C 9 hydroxy proton ($\delta 12.05$) and with both $\mathrm{C} 8(\delta 108.1)$ and $\mathrm{C} 9 \mathrm{a}(\delta 109.3)$. This pattern is consistent only with the structure 29 and firmly establishes that the cycloaddition between the diene $\mathbf{1 2}$ and the bromobenzoquinone 5 had proceeded with the expected regiochemical control.

Conversion of the ($3 S$)-pyranonaphthoquinone 29 to ($1 R, 3 S$)-thysanone 1 required stereospecific hydroxylation at C1. Accordingly, irradiation of a mixture of the quinone 29 and bromine in carbon tetrachloride gave the benzylic bromide 30 that was not isolated but instead was treated, in situ, with aqueous tetrahydrofuran. Chromatographic purification gave thysanone $1, \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{6}, \mathrm{mp} 197-198^{\circ} \mathrm{C}$ (decomp.), in 85% yield over the two steps. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ (Table 2) contains a one proton signal at $\delta 12.23$ consistent with a chelated phenolic hydroxy group and meta-coupled ($J 2.4 \mathrm{~Hz}$) aromatic proton signals at $\delta 6.57$ and 7.02 . These data are in full accord with the structure of the A ring, while at higher field the spectrum contains signals from the acetal methine proton ($\delta 5.90$), the C-methyl group ($\delta 1.28$), and an ABX pattern due to $\mathrm{H}_{2} 4$ and H 3 , confirming the composition of the C ring. The ${ }^{13} \mathrm{C}$ NMR spectrum of 1 consists of a single set of fourteen signals including signals from two carbonyl carbon ($\delta 184.4$ and 187.4), an acetal carbon ($\delta 86.6$), methyl ($\delta 21.3$), methylene ($\delta 30.0$) and a methine carbon ($\delta 62.1$), all in accord with the assigned structure.

The relative stereochemistry of the newly formed C 1 lactol chiral centre in $\mathbf{1}$ was established by comparison of the chemical shifts of H 1 and H 3 in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ with those of their counterparts in the $(1 R, 3 S)$-lactols 20 and 23 and the ($1 S, 3 S$)-lactol 26 (Table 2). The data in Table 2 show a far closer correlation between the chemical shift and coupling constants for protons in the lactol rings 20, 23 and $\mathbf{1}$ than is the case with the lactol 26 . This suggests a configuration in $\mathbf{1}$ in which H 1 and H 3 are mutually trans disposed. This is supported by the fact that, whereas the $(1 S, 3 S)$-lactol 26 shows a strong (8.8%) NOE between H1 and H3 (Fig. 2) there is no corresponding NOE between these protons in the spectra of the lactols 1, 20 and 23 (Fig. 2). Thysanone 1, as prepared above, must therefore have the $(1 R, 3 S)$-absolute configuration by virtue of its derivation from ethyl (S)-lactate $\mathbf{8}$

Table $2{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data (d_{6}-acetone) for natural ${ }^{3}$ and synthetic thysanone $\mathbf{1}$

Position	Thysanone from T. penicilloides ${ }^{3}$		Synthetic (1R,3S)-thysanone 1	
	$\delta_{\mathrm{H}}{ }^{a}$ (multiplicity) and coupling constants (J / Hz)	$\delta_{\text {C }}{ }^{\text {a }}$	$\delta_{\mathrm{H}}{ }^{b}$ (multiplicity) and coupling constants (J / Hz)	$\delta_{\text {C }}{ }^{\text {b }}$
1	5.84 (s)	86.5	5.90 (s)	86.6
3	4.21 (m)	62.0	4.30 (m)	62.1
$4_{a x}$	2.05 (dd, 19.4, 11.0)	29.9	2.10 (dd, 19.4, 11.3)	30.0
$4{ }_{\text {eq }}$	$2.62(\mathrm{dd}, 19.4,3.5)$		$2.65 \text { (dd, 19.4, } 3.5 \text {) }$	
4 a	-	144.0	-	144.1
5	-	184.2	-	184.4
5 a	-	134.6	-	134.7
6	6.97 (d, 2.3)	108.7	7.02 (d, 2.4)	108.8
7	-	165.2	-	165.5
8	6.53 (d, 2.3)	108.4	6.57 (d, 2.4)	108.4
9	-	165.1	-	165.2
9a	-	109.5	-	109.5
10	-	187.3	-	187.4
10a	-	142.0	-	142.2
$3-\mathrm{Me}$	1.25 (d, 6.3)	21.4	1.28 (d, 6.2)	21.3
$9-\mathrm{OH}$	12.19 (s)	-	12.23 (s)	-

${ }^{a}$ Lit. ${ }^{3}$ field strength not specified. ${ }^{b} 400 \mathrm{MHz}$ for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$.

A comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data recorded for synthetic $(1 R, 3 S)$-thysanone $\mathbf{1}$ with the data reported for the natural product ${ }^{3}$ is made in Table 2. From this comparison it is clear that both the natural and synthetic quinones possess the same constitution, substitution pattern and, in the lactol ring, the same relative configuration. We have also prepared the methyl acetal 2, $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{6}$, of synthetic thysanone $\mathbf{1}$, and the spectroscopic data for the synthetic material (Experimental) are in close agreement with the data reported for the methyl acetal of natural thysanone. ${ }^{3}$

The absolute configuration of natural thysanone

Thysanone from Thysanophora penicilloides is reported to be dextrorotatory $\left\{[a]_{\mathrm{D}}+29(c \quad 1.62, \mathrm{MeOH})\right\}^{3}$ but the specific rotation of the corresponding methyl acetal was not reported. The specific rotation of synthetic ($1 R, 3 S$)-thysanone $\mathbf{1}$ (and its acetal 2) gave widely fluctuating, unreliable readings at concentrations close to that quoted for thysanone in the literature. ${ }^{3}$ However, at higher dilution both synthetic compounds were consistently laevorotatory at the sodium D-line, thereby suggesting, if anything, that they were enantiomeric with the natural system. ${ }^{2}$ However, we were sufficiently sceptical of this conclusion that we sought samples of natural thysanone and its methyl acetal in order to make a direct comparison with synthetic materials. These were kindly provided by Dr S. B. Singh of Merck Sharp \& Dohme. In our hands, the specific rotation of both natural thysanone and its methyl acetal were variable at the concentration quoted in the literature but, at higher dilution, were consistently laevorotatory consistent with the synthetic and natural quinones having the same absolute configuration.

In order to resolve this apparent quandary the circular dichroism (CD) spectra of synthetic ($1 R, 3 S$)-thysanone $\mathbf{1}$ and its methyl acetal 2 and those of their natural counterparts were recorded. The CD spectra of $(1 R, 3 S)$-thysanone 1 and natural thysanone are shown together in Fig. 4. Both show negative Cotton effects close to 300 nm and positive Cotton effects close to 260 nm . The near superimposability of these curves (rather than a mirror image relationship) establishes beyond any doubt that thysanone, as it occurs in Thysanophora penicilloides, has the $(1 R, 3 S)$-absolute configuration shown in structure 1 . Similarly, the synthetic ($1 R, 3 S$)-acetal 2 and its naturally derived counterpart show closely matched CD spectra (Fig. 5).

Summary

The work described above constitutes the first and, to date, the

Fig. 4 Circular dichroism spectra (MeOH) of natural thysanone (-) and synthetic $(1 R, 3 S)$-thysanone $1(---)$.

Fig. 5 Circular dichroism spectra (MeOH) of naturally derived thysanone methyl acetal (-) and synthetic ($1 R, 3 S$)-thysanone methyl acetal $2(---)$.
only total synthesis of ($1 R, 3 S$)-thysanone 1 . Direct comparison of the synthetic and natural materials establishes unequivocally the structure and absolute stereochemistry of the natural product. The synthetic method uses cheap, readily available starting materials and is applicable, in principle, to the synthesis of a wide range of analogous pyranonaphthoquinones with the potential for improved biological profiles.

Experimental

General and materials

Melting points were determined on a hot-stage apparatus and are uncorrected. IR spectra were recorded using a PerkinElmer 983 G spectrophotometer for samples as potassium bromide discs. Electronic spectra were recorded on a Shimadzu UV-2401PC spectrophotometer using either ethanolic or methanolic solutions in a 10 mm quartz cell. NMR spectra were recorded with JEOL JNM-GX-400 and Varian Unity 400
spectrometers (${ }^{1} \mathrm{H}$ at 400 MHz and ${ }^{13} \mathrm{C}$ at 100 MHz) for solutions in CDCl_{3} unless stated otherwise. Mass spectra were recorded on a Shimadzu GCMS-QP505A spectrometer at 70 eV (probe; EI) and a Micromass QUATTRO II (ESI). Specific rotations were measured using a JASCO DIP-1000 polarimeter and are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. CD spectra were obtained using an AVIV 62DS spectrometer for solutions in methanol.

Materials

Thin layer chromatography (TLC) and preparative TLC (PLC) were performed on Merck precoated silica gel $60 \mathrm{~F}_{254}$ and Merck Kieselgel $60 \mathrm{GF}_{254}(20 \mathrm{~g}$ silica gel spread on $20 \times 20 \mathrm{~cm}$ glass plates), respectively. Visualisation was under UV light (254 or 366 nm). Gel permeation chromatography employed a column ($40 \times 3.5 \mathrm{~cm}$) of Sephadex LH-20 suspended in and eluted with methanol-dichloromethane.
$(S)-(+)-5-$ Bromomellein $\quad[(S)-(+)$-5-bromo-8-hydroxy-3-methyl-3,4-dihydro-1 \boldsymbol{H}-2-benzopyran-1-one] 9 . To a solution of $(S)-(+)$-mellein $6[a]_{\mathrm{D}}+101\left(c \quad 0.67, \mathrm{CHCl}_{3}\right)\left\{\right.$ lit. ${ }^{22}[a]_{\mathrm{D}}+102$ (c $\left.\left.1.07, \mathrm{CHCl}_{3}\right),[a]_{\mathrm{D}}+88(c 1.03, \mathrm{MeOH})\right\}(230 \mathrm{mg}, 1.29 \mathrm{mmol} ;$ prepared by the methods described previously) ${ }^{5}$ in dichloromethane (12 ml) was added bromine ($248 \mathrm{mg}, 1.55 \mathrm{mmol}$) in dichloromethane (3 ml). The solution was stirred for 30 min at room temperature and washed sequentially with dilute sodium thiosulfate $(10 \mathrm{ml})$ and water $(2 \times 10 \mathrm{ml})$ then dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of the solvent under reduced pressure followed by flash vacuum pad chromatography (dichloromethane-light petroleum 1:1, $R_{\mathrm{F}} 0.50$) and crystallisation from dichloro-methane-hexane gave $(S)-(+)-5$-bromomellein 9 (285 mg , 86%) as colourless prisms, $\mathrm{mp} 96-97{ }^{\circ} \mathrm{C}[(\pm)$-form, $\mathrm{mp} 97-99$ $\left.{ }^{\circ} \mathrm{C}\right] ;[a]_{\mathrm{D}}+116$ (c 1.02, CHCl_{3}) (Found: C, 46.8; H, 3.5. $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrO}_{3}$ requires C, $46.7 ; \mathrm{H}, 3.5 \%$). $v_{\text {max }} 3333 \mathrm{br}$, 2979, 1676, $1453,1210,737 \mathrm{~cm}^{-1}[(\pm)$-form, 3319br, 2978, 1663, 1452, 1221, $1207 \mathrm{~cm}^{-1} \mathrm{~J} . \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.57(3 \mathrm{H}, \mathrm{d}, J 6.4 \mathrm{~Hz}, 3-\mathrm{Me}), 2.80$ $\left(1 \mathrm{H}, \mathrm{dd}, J 17.0\right.$ and $\left.11.7 \mathrm{~Hz}, \mathrm{H}_{a x} 4\right), 3.19(1 \mathrm{H}$, dd, $J 17.0$ and 3.3 $\left.\mathrm{Hz}, \mathrm{H}_{e q} 4\right), 4.71(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 6.84(1 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}, \mathrm{H} 7), 7.62$ $(1 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}, \mathrm{H} 6), 11.19(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) . \delta_{\mathrm{C}}(100 \mathrm{MHz}) 20.6$ (3-Me), 34.8 (C4), 75.4 (C3), 109.6, 111.0, 117.9, 138.3, 139.4 and 161.5 (all Ar), $169.3(\mathrm{Cl})$. Mass spectrum (EI) $m / z 258\left[\mathrm{M}^{+}\right.$, $\left.{ }^{81} \mathrm{Br}(45 \%)\right], 256\left[\mathrm{M}^{+},{ }^{79} \mathrm{Br}(37 \%)\right], 238$ (22), 171 (37), 170 (56), 169 (40), 168 (55), 167 (27), 154 (20), 153 (21), 149 (25), 135 (35), 134 (49), 131 (22), 129 (23), 128 (35), 127 (34), 125 (20), 123 (21), 115 (21), 111 (30), 109 (26), 105 (34), 104 (20), 103 (21), 98 (21), 97 (50), 96 (23), 95 (43), 91 (35), 85 (49), 84 (46), 83 (72), 82 (37), 81 (60), 79 (36), 78 (23), 77 (53), 73 (20), 71 (70), 70 (49), 69 (100), 68 (24), 67 (54), 65 (21), 63 (24).
$(S)-(+)-5,7-$ Dibromomellein $\quad[(S)-(+)-5,7$-dibromo-8-hydroxy-3-methyl-3,4-dihydro-1 \boldsymbol{H}-2-benzopyran-1-one] 10. Method 1. To a solution of $(S)-(+)-5$-bromomellein $9(240 \mathrm{mg}$, 0.93 mmol) in dimethylformamide (10 ml) was added dropwise a solution of N-bromosuccinimide ($174 \mathrm{mg}, 0.98 \mathrm{mmol}$) in dimethylformamide (2 ml). The reaction mixture was stirred at room temperature, in the dark, for 14 h , diluted with water $(20 \mathrm{ml})$, extracted with chloroform $(3 \times 10 \mathrm{ml})$ and the combined extracts were washed with water $(5 \times 10 \mathrm{ml})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of solvent under reduced pressure followed by flash vacuum pad chromatography of the residue (dichloromethane, $R_{\mathrm{F}} 0.70$) and crystallisation from dichloromethanehexane gave $(S)-(+)$-5,7-dibromomellein $10(305 \mathrm{mg}, 97 \%)$ as colourless prisms, $\mathrm{mp} 144-145{ }^{\circ} \mathrm{C}\left[(\pm)\right.$-form, $\left.\mathrm{mp} \mathrm{170-172}{ }^{\circ} \mathrm{C}\right]$; $[a]_{\mathrm{D}}+80.4\left(c 1.01, \mathrm{CHCl}_{3}\right)$ (Found: C, 35.7; H, 2.4. $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{3}$ requires C, $35.8 ; \mathrm{H}, 2.4 \%$). $v_{\text {max }} 3433$ br, 2977, 1683, 1414, 1198 $\mathrm{cm}^{-1}\left[(\pm)\right.$-form, $\left.3430 \mathrm{br}, 3059,2980,1665,1418,1205 \mathrm{~cm}^{-1}\right]$. $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.58(3 \mathrm{H}, \mathrm{d}, J 6.4 \mathrm{~Hz}, 3-\mathrm{Me}), 2.78(1 \mathrm{H}, \mathrm{dd}, J 17.1$ and $\left.11.7 \mathrm{~Hz}, \mathrm{H}_{a x} 4\right), 3.18\left(1 \mathrm{H}, \mathrm{dd}, J 17.1\right.$ and $\left.3.2 \mathrm{~Hz}, \mathrm{H}_{e q} 4\right), 4.73$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 7.92(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6), 11.88(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) . \delta_{\mathrm{C}}(100 \mathrm{MHz})$
20.7 (3-Me), 34.7 (C4), 75.8 (C3), 110.3, 110.6, 111.2, 137.7, 141.8 and 158.4 (all Ar), 169.0 (C1). Mass spectrum (EI) $m / z 338\left[\mathrm{M}^{+},{ }^{81} \mathrm{Br}_{2}(50 \%)\right], 336\left[\mathrm{M}^{+},{ }^{81} \mathrm{Br} /{ }^{79} \mathrm{Br}(100 \%)\right], 334$ $\left[\mathrm{M}^{+},{ }^{79} \mathrm{Br}_{2}(52 \%)\right], 320(28), 318$ (55), 316 (27), 307 (25), 292 (24), 211 (21), 102 (29), 84 (24), 77 (23), 76 (21), 75 (33).

Method 2. To a solution of $(S)-(+)$-mellein $6(55.5 \mathrm{mg}$, $0.31 \mathrm{mmol})$ in dimethylformamide (2 ml) was slowly added a solution of N-bromosuccinimide ($114 \mathrm{mg}, 0.64 \mathrm{mmol}$) in dimethylformamide (0.5 ml). The reaction mixture was stirred at room temperature, in the dark, for 16 h , diluted with water $(10 \mathrm{ml})$, extracted with chloroform $(3 \times 8 \mathrm{ml})$ and the combined extracts were washed with water $(3 \times 10 \mathrm{ml})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. After removal of the solvent under reduced pressure the residue was purified by flash vacuum pad chromatography (dichloromethane, $R_{\mathrm{F}} 0.70$) to give (S)-(+)-5,7-dibromomellein $\mathbf{1 0}$ (94.7 $\mathrm{mg}, 91 \%$), identical in all respects to the product described above.
(\pm)-7-Bromo-3-methyl-3,4-dihydro-1 H -2-benzopyran-1,5,8-
trione 3. To (\pm)-5,7-dibromomellein $10(50 \mathrm{mg}, 0.15 \mathrm{mmol})$ in acetonitrile (5 ml) at $0{ }^{\circ} \mathrm{C}$ was added a solution of cerium(Iv) ammonium nitrate ($245 \mathrm{mg}, 0.45 \mathrm{mmol}$) in water (0.8 ml). The reaction mixture was stirred for 2 min , diluted with chloroform (5 ml) and water (5 ml) and extracted with chloroform ($3 \times 5 \mathrm{ml}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to give the (\pm)benzoquinone $3(40 \mathrm{mg}, 99 \%)$ as a yellow oil, which was not purified further. $v_{\text {max }} 2979,1727,1657,1588,1252,758 \mathrm{~cm}^{-1}$. $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.53(3 \mathrm{H}, \mathrm{d}, J 6.3 \mathrm{~Hz}, 3-\mathrm{Me}), 2.52(1 \mathrm{H}, \mathrm{dd}, J 19.1$ and $\left.11.6 \mathrm{~Hz}, \mathrm{H}_{a x} 4\right), 3.02\left(1 \mathrm{H}, \mathrm{dd}, J 19.1\right.$ and $\left.3.1 \mathrm{~Hz}, \mathrm{H}_{e q} 4\right), 4.60$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 7.42(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6) . \delta_{\mathrm{C}}(100 \mathrm{MHz}) 20.5(3-\mathrm{Me}), 28.6$ (C4), 73.9 (C3), 126.4, 137.2, 139.6, 149.6, 158.6, 173.8, 182.7.

1,3-Dimethoxy-1-trimethylsilyloxybuta-1,3-diene 11. A mixture of methyl acetoacetate ($5.86 \mathrm{~g}, 0.05 \mathrm{~mol}$), trimethyl orthoformate ($5.36 \mathrm{~g}, 0.05 \mathrm{~mol}$) and sulfuric acid (3 drops) was stirred at room temperature for 24 h . Quinoline (4 drops) was added and the solution was distilled under reduced pressure to give methyl (E)-3-methoxybut-2-enoate ($5.84 \mathrm{~g}, 89 \%$) as a colourless liquid, bp $108-110^{\circ} \mathrm{C} / 115 \mathrm{mmHg}$ (lit. ${ }^{8} 175-177{ }^{\circ} \mathrm{C}$). $v_{\text {max }} 2946$, 2841, 1708, 1623, 1437, 1391, 1277, 1192, 1140, $1050 \mathrm{~cm}^{-1}$. $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 2.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} 4\right), 3.60$ and 3.64 (each $3 \mathrm{H}, \mathrm{s}, 1,3-$ $\mathrm{OMe}), 5.00(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 2) . \delta_{\mathrm{C}}(75 \mathrm{MHz}) 18.8(\mathrm{C} 4), 50.6$ and 55.3 (each OMe), 90.4 (C2), 168.2, 173.2.

To a solution of LDA [prepared from diisopropylamine ($4.5 \mathrm{~g}, 44 \mathrm{mmol}$) in tetrahydrofuran (40 ml) and n-butyllithium ($29.5 \mathrm{ml}, 1.5 \mathrm{M}$ in hexane, 44 mmol) at $0^{\circ} \mathrm{C}$, then cooled to $-78{ }^{\circ} \mathrm{C}$] was added methyl (E)-3-methoxybut-2-enoate (5.5 g , 42 mmol) over 30 min . After a further 45 min chlorotrimethylsilane $(5.5 \mathrm{~g}, 50.7 \mathrm{mmol})$ in tetrahydrofuran $(8 \mathrm{ml})$ was added at $-78{ }^{\circ} \mathrm{C}$ and the solution was allowed to warm to room temperature (1.5 h), filtered and the filtrate was concentrated under reduced pressure. The residual oil was diluted with pentane (70 ml), filtered through Celite ${ }^{\circledR}$, concentrated and distilled to give the diene $11(6.46 \mathrm{~g}, 76 \%)$, bp $48-50^{\circ} \mathrm{C} / 0.6 \mathrm{mmHg}$ (lit. ${ }^{8} 54^{\circ} \mathrm{C} / 0.5 \mathrm{mmHg}$). $v_{\text {max }} 1656,1626,1266,1251,1199,1168$, $1095,846 \mathrm{~cm}^{-1} . \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.25\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 3.55$ and 3.56 (each $3 \mathrm{H}, \mathrm{s}, 1,3-\mathrm{OMe}), 3.97\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}_{\mathrm{a}} 4\right), 4.02\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}_{\mathrm{b}} 4\right)$, 4.33 ($1 \mathrm{H}, \mathrm{br}$ s, H2).

Reaction of the benzoquinone 3 with 1,3 -dimethoxy-1-tri-methylsilyloxybuta-1,3-diene 11. To the (\pm)-benzoquinone 3 $(40 \mathrm{mg}, 0.15 \mathrm{mmol})$ in dichloromethane $(2 \mathrm{ml})$ at $-30^{\circ} \mathrm{C}$ was added 1,3-dimethoxy-1-trimethylsilyloxybuta-1,3-diene $\mathbf{1 1}$ ($30 \mathrm{mg}, 0.15 \mathrm{mmol}$) in dichloromethane $(1 \mathrm{ml})$. The mixture was stirred at $-30^{\circ} \mathrm{C}$ for 15 min then allowed to warm to room temperature (30 min). Concentration under reduced pressure, slow filtration through a short column of silica (ethyl acetate) followed by preparative thin-layer chromatography ($50: 49: 1$ toluene-ethyl formate-formic acid, $R_{\mathrm{F}} 0.65$) gave a $4: 1$ mixture
of the Michael adduct $\mathbf{1 4}$ and a minor isomer ($20 \mathrm{mg}, 34 \%$) as a pale yellow oil (Found: $[\mathrm{M}+\mathrm{H}]^{+}, 401.0224, \mathrm{C}_{16} \mathrm{H}_{18}{ }^{79} \mathrm{BrO}_{7}$ requires $\left.[\mathrm{M}+\mathrm{H}]^{+}, 401.0236\right) . v_{\text {max }} 3015,1700,1674,1625$, $1285,1214,1142,770 \mathrm{~cm}^{-1} . \delta_{\mathrm{H}}(400 \mathrm{MHz})$ (major isomer only) $1.46(3 \mathrm{H}, \mathrm{d}, J 6.3 \mathrm{~Hz}, 3-\mathrm{Me}), 1.69(1 \mathrm{H}, \mathrm{dd}, J 14.6$ and 12.2 Hz , $\left.\mathrm{H}_{a x} 4\right), 2.31\left(1 \mathrm{H}, \mathrm{dd}, J 14.6\right.$ and $\left.2.6 \mathrm{~Hz}, \mathrm{H}_{e q} 4\right), 2.50(1 \mathrm{H}, \mathrm{d}, J 12.4$ $\left.\mathrm{Hz}, \mathrm{H}_{\mathrm{a}} 1^{\prime}\right), 3.52(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.63\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.05(1 \mathrm{H}, \mathrm{d}$, $\left.J 12.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}} 1^{\prime}\right), 5.03(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 5.13\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{\prime}\right), 6.78(1 \mathrm{H}$, $\mathrm{s}, \mathrm{H} 6), 13.65(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) . \delta_{\mathrm{C}}(100 \mathrm{MHz})$ (major isomer) 21.7 $(3-\mathrm{Me}), 35.0(\mathrm{C} 4), 41.7\left(\mathrm{C} 1\right.$ '), $49.0(\mathrm{C} 4 \mathrm{a}), 51.4\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, 55.6 (OMe), 73.6 (C3), 94.6 (C3'), 100.4 (C8a), 136.0 (C6), 136.1 (C7), 159.8 (C8), 167.4 (C4'), 168.3 (C2'), 169.8 (C1), 196.9 (C5).
(\pm)-7-Bromo-5-methoxymellein 8-O-methyl ether [$\pm \pm$)-7-bromo-5,8-dimethoxy-3-methyl-3,4-dihydro-1 H -2-benzopyran-
1-one] 19. To the crude (\pm)-benzoquinone $3(40 \mathrm{mg}, 0.15 \mathrm{mmol})$ in tetrahydrofuran (5 ml) under nitrogen was added sodium dithionite (200 mg) and water (2 ml). The mixture was stirred vigorously for 30 min after which time a further aliquot of sodium dithionite (100 mg) was added and stirring was continued for 30 min . The mixture was diluted with water $(10 \mathrm{ml})$, extracted with chloroform ($3 \times 10 \mathrm{ml}$) and the combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residue was dissolved in acetone (8 ml) containing dimethyl sulfate $(0.08 \mathrm{ml})$ in the presence of anhydrous potassium carbonate (400 mg) and the mixture was heated at reflux for 1.5 h . The mixture was cooled, diluted with water (10 ml), extracted with chloroform $(3 \times 10 \mathrm{ml})$ and the combined organic extracts were concentrated to approximately 5 ml . To this solution was added water $(1 \mathrm{ml})$ and ammonium hydroxide $(0.3 \mathrm{ml})$ and the emulsion was stirred vigorously for 1 h . Addition of water (10 ml), extraction with chloroform ($3 \times 10 \mathrm{ml}$), washing of the combined extracts with water ($5 \times 10 \mathrm{ml}$), drying $\left(\mathrm{MgSO}_{4}\right)$ and concentration under reduced pressure gave an oil that was purified by flash vacuum pad chromatography (dichloromethane-ethyl acetate $98: 2, R_{\mathrm{F}}$ 0.30) and crystallised from ethyl acetate to give the (\pm)-dimethoxyisocoumarin $19(28 \mathrm{mg}, 63 \%)$ as colourless rhomboids, $\mathrm{mp} 146-147^{\circ} \mathrm{C}$ (Found: C, $47.8 ; \mathrm{H}, 4.4 . \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrO}_{4}$ requires C, 47.9; H, 4.4\%). $v_{\text {max }} 2974,2929,1722,1471,1423,1261,1216$, $1206,1124,1061,969 \mathrm{~cm}^{-1} . \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.48(3 \mathrm{H}, \mathrm{d}, J 6.3 \mathrm{~Hz}$, $3-\mathrm{Me}), 2.52\left(1 \mathrm{H}, \mathrm{dd}, J 17.0\right.$ and $\left.11.6 \mathrm{~Hz}, \mathrm{H}_{a x} 4\right), 3.09(1 \mathrm{H}, \mathrm{dd}$, $J 17.0$ and $2.9 \mathrm{~Hz}, \mathrm{H}_{e q} 4$), 3.83 and 3.91 (each $3 \mathrm{H}, \mathrm{s}$, OMe), 4.50 $(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 7.24(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6) . \delta_{\mathrm{c}}(100 \mathrm{MHz}) 20.7$ (3-Me), 29.2 (C 4), 56.1 and 62.0 (each OMe), 74.2 (C3), 117.6, 119.5, 120.4, 129.3, 151.6 and 151.9 (all Ar), $161.5(\mathrm{Cl})$. Mass spectrum (ESI) $m / z 303\left\{[\mathrm{M}+\mathrm{H}]^{+},{ }^{81} \mathrm{Br}\right\}, 301\left\{[\mathrm{M}+\mathrm{H}]^{+},{ }^{79} \mathrm{Br}\right\}$.
$\left(1 R^{*}, 3 S^{*}\right)$-(\pm)-7-Bromo-1-hydroxy-5,8-dimethoxy-3-methyl-3,4-dihydro-1 \boldsymbol{H}-2-benzopyran 20 . To the (\pm)-lactone 19 (110 mg , $0.37 \mathrm{mmol})$ in toluene (18 ml) at $-60^{\circ} \mathrm{C}$ under nitrogen was added diisobutylaluminium hydride (1.5 M in toluene, 0.32 ml , $0.48 \mathrm{mmol})$. The reaction mixture was maintained at $-60^{\circ} \mathrm{C}$ for 45 min and allowed to warm slowly to room temperature (approx. 45 min) and stirred for a further 30 min . The solution was poured into a saturated aqueous solution of potassium sodium tartrate $(50 \mathrm{ml})$ and stirred vigorously (30 min). The product was extracted into chloroform ($4 \times 15 \mathrm{ml}$) and the combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration under reduced pressure gave the (\pm)-lactol $20(104 \mathrm{mg}, 94 \%)$, mp 138$139^{\circ} \mathrm{C}$, which was not purified further. $v_{\text {max }} 3328 \mathrm{br}, 2960,2941$, $1474,1237,1041,994 \mathrm{~cm}^{-1} . \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.38(3 \mathrm{H}, \mathrm{d}, J 6.3 \mathrm{~Hz}$, $3-\mathrm{Me}), 2.25\left(1 \mathrm{H}, \mathrm{dd}, J 17.5\right.$ and $\left.11.6 \mathrm{~Hz}, \mathrm{H}_{a x} 4\right), 2.73(1 \mathrm{H}$, dd, $J 17.5$ and $3.4 \mathrm{~Hz}, \mathrm{H}_{e q} 4$), 3.79 and 3.90 (each 3 H , s, OMe), 4.38 $(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 6.15(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 1), 6.96(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6)$. Mass spectrum (ESI) $m / z 287\left\{[\mathrm{M}-\mathrm{OH}]^{+},{ }^{81} \mathrm{Br}\right\}, 285\left\{[\mathrm{M}-\mathrm{OH}]^{+},{ }^{79} \mathrm{Br}\right\}$.
$\left(1 R^{*}, 3 S^{*}\right)$-(\pm)-7-Bromo-5,8-dimethoxy-3-methyl-3,4-dihydro-1H-2-benzopyran 21. Method 1 . To the (\pm)-lactol $20(68 \mathrm{mg}$,
0.224 mmol) and sodium borohydride ($85 \mathrm{mg}, 2.25 \mathrm{mmol}$) in tetrahydrofuran (4 ml) under nitrogen was slowly added trifluoroacetic acid $(0.5 \mathrm{ml})$. The mixture was stirred at $30^{\circ} \mathrm{C}$ for 1 h , diluted with water (10 ml) and stirred for 10 min . The product was extracted into chloroform ($3 \times 5 \mathrm{ml}$) and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography (ether-light petroleum 1:2, $R_{\mathrm{F}} 0.51$) gave the (\pm)-benzopyran $21(45 \mathrm{mg}$, 70%) as a colourless oil. $v_{\text {max }} 3012,2968,2932,1470,1229,1213$, $755 \mathrm{~cm}^{-1} . \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.36(3 \mathrm{H}, \mathrm{d}, J 6.3 \mathrm{~Hz}, 3-\mathrm{Me}), 2.31(1 \mathrm{H}$, dd, $J 17.1$ and $\left.10.6 \mathrm{~Hz}, \mathrm{H}_{a \mathrm{z}} 4\right), 2.69(1 \mathrm{H}$, dd, $J 17.1$ and 3.3 Hz , $\left.\mathrm{H}_{e q} 4\right), 3.69(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 3.75$ and 3.78 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.69 $\left(1 \mathrm{H}, \mathrm{d}, J 15.9 \mathrm{~Hz}, \mathrm{H}_{a x} 1\right), 4.97\left(1 \mathrm{H}, \mathrm{d}, J 15.9 \mathrm{~Hz}, \mathrm{H}_{e q} 1\right), 6.86$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6) . \delta_{\mathrm{C}}(100 \mathrm{MHz}) 21.6$ (3-Me), $30.1(\mathrm{C} 4), 55.7$ and 60.5 (each OMe), 64.7 (C1), 70.2 (C3), 112.1, 113.3, 123.4, 130.6, 146.4 and 153.6 (all Ar).

Method 2. To the (\pm)-lactol 20 ($32 \mathrm{mg}, 0.106 \mathrm{mmol}$) in dichloromethane (6 ml) at $-70^{\circ} \mathrm{C}$ was added trifluoroacetic acid ($24 \mu \mathrm{l}$, $0.31 \mathrm{mmol})$ and the solution was stirred for 15 min . Triethylsilane ($49 \mu \mathrm{l}, 0.31 \mathrm{mmol}$) was added and after 15 min at $-70^{\circ} \mathrm{C}$ the solution was allowed to warm to room temperature and stirred for a further 30 min . Water $(10 \mathrm{ml})$ was added and the product was extracted into chloroform ($3 \times 8 \mathrm{ml}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to give the (\pm)-benzopyran $21(26 \mathrm{mg}$, 83%) identical to the product described above.
(\pm-7-Bromo-3-methyl-3,4-dihydro-1 H -2-benzopyran-5,8-dione 5. To a solution of the (\pm)-benzopyran $21(27 \mathrm{mg}, 0.094 \mathrm{mmol})$ in acetonitrile (5 ml) was added dropwise a solution of cerium(Iv) ammonium nitrate ($154 \mathrm{mg}, 0.28 \mathrm{mmol}$) in water $(1 \mathrm{ml})$. The mixture was stirred at room temperature for 30 min , diluted with water (10 ml), extracted with chloroform ($3 \times 5 \mathrm{ml}$) and the combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residual oil in dichloromethane was filtered through a short column $(0.5 \mathrm{~cm})$ of silica gel and the filtrate was concentrated to give the (\pm)-pyranobenzoquinone $5(19 \mathrm{mg}, 79 \%)$ as a yellow oil. $v_{\text {max }} 2979,1659$, 1647, 1583, $1135 \mathrm{~cm}^{-1} \cdot \lambda_{\text {max }}(\mathrm{EtOH}) 212(\log \varepsilon 4.30), 273 \mathrm{~nm}$ (3.94). $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.34(3 \mathrm{H}, \mathrm{d}, J 6.3 \mathrm{~Hz}, 3-\mathrm{Me}), 2.20(1 \mathrm{H}$, dddd, J 19.2, 10.0, 4.3 and $2.7 \mathrm{~Hz}, \mathrm{H}_{a x} 4$), $2.58(1 \mathrm{H}$, ddd, $J 19.2$, 3.4 and $\left.2.9 \mathrm{~Hz}, \mathrm{H}_{e q} 4\right), 3.63(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 4.41(1 \mathrm{H}$, ddd, $J 18.7$, 4.3 and $\left.3.4 \mathrm{~Hz}, \mathrm{H}_{a x} 1\right), 4.71\left(1 \mathrm{H}\right.$, dd, $J 18.7$ and $\left.2.7 \mathrm{~Hz}, \mathrm{H}_{e q} 1\right)$, $7.26(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6) . \delta_{\mathrm{C}}(100 \mathrm{MHz}) 21.1$ (3-Me), 29.1 (C4), 63.3 (C1), 69.4 (C3), 137.0, 137.8 (C6), 140.28, 140.29, 177.9 (C5), 183.5 (C8). Mass spectrum (EI) $m / z 258\left\{[\mathrm{M}]^{+},{ }^{81} \mathrm{Br}(23 \%)\right\}, 256$ $[\mathrm{M}]^{+},{ }^{79} \mathrm{Br}$ (19), 243 (24), 241 (28), 216 (31), 215 (20), 214 (62), 212 (39), 186 (21), 177 (21), 134 (20), 105 (59), 86 (53), 84 (100), 77 (55).
(S)-(+)-5,7-Dibromomellein 8-O-methyl ether [(S)-(+)-5,7-dibromo-8-methoxy-3-methyl-3,4-dihydro-1 \mathbf{H}-2-benzopyran-1one] 22. To a solution of (S)-(+)-5,7-dibromomellein $\mathbf{1 0}$ $(67 \mathrm{mg}, 0.20 \mathrm{mmol})$ in acetone $(8 \mathrm{ml})$ were added potassium carbonate (200 mg) and dimethyl sulfate (0.1 ml) and the mixture was heated at reflux for 45 min . After cooling to room temperature, water (10 ml) was added and the product was extracted into chloroform ($3 \times 5 \mathrm{ml}$) and the combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Chromatography (dichloromethane, $R_{\mathrm{F}} 0.40$) and crystallisation from ethyl acetate-hexane yielded the (S)-(+)-methyl ether $22(68 \mathrm{mg}$, 98%) as colourless needles, $\mathrm{mp} 87-90^{\circ} \mathrm{C}[(\pm)$-form, $\mathrm{mp} 87-$ $\left.88{ }^{\circ} \mathrm{C}\right] ;[a]_{\mathrm{D}}+147\left(c\right.$ 1.17, CHCl_{3}) (Found: C, 37.6; H, 2.9. $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{3}$ requires C, 37.7; $\mathrm{H}, 2.9 \%$). $v_{\text {max }} 2943,1717,1459$, 1413, 1272, 1221, $1113 \mathrm{~cm}^{-1}[(\pm)$-form, 2932, 1722, 1452, 1414, $\left.1268,1221,1210 \mathrm{~cm}^{-1}\right] . \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.52(3 \mathrm{H}, \mathrm{d}, J 6.4 \mathrm{~Hz}$, $3-\mathrm{Me}), 2.73\left(1 \mathrm{H}, \mathrm{dd}, J 17.0\right.$ and $\left.11.6 \mathrm{~Hz}, \mathrm{H}_{a x} 4\right), 3.12(1 \mathrm{H}$, dd, $J 17.0$ and $\left.2.7 \mathrm{~Hz}, \mathrm{H}_{e q} 4\right), 3.97(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.54(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3)$, $7.97(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6) . \delta_{\mathrm{C}}(100 \mathrm{MHz}) 20.5$ (3-Me), 36.1 (C4), 62.3 (OMe), 73.8 (C3), 117.1, 118.8, 121.5, 140.1, 140.5 and 158.4
(all Ar), $160.8(\mathrm{C} 1)$. Mass spectrum (ESI) $m / z 353\left\{[\mathrm{M}+\mathrm{H}]^{+}\right.$, $\left.{ }^{81} \mathrm{Br}_{2}\right\}, 351\left\{[\mathrm{M}+\mathrm{H}]^{+},{ }^{81} \mathrm{Br} /{ }^{79} \mathrm{Br}\right\}, 349\left\{[\mathrm{M}+\mathrm{H}]+{ }^{+}{ }^{79} \mathrm{Br}_{2}\right\}$.

(1R,3S)-(+)-5,7-Dibromo-1-hydroxy-8-methoxy-3-methyl-

 3,4-dihydro-1H-2-benzopyran 23. To the $(S)-(+)$-lactone 22 ($230 \mathrm{mg}, 0.657 \mathrm{mmol}$) in toluene (20 ml) at $-70^{\circ} \mathrm{C}$ was slowly added diisobutylaluminium hydride (1.5 M in toluene, 0.57 ml , $0.85 \mathrm{mmol})$. The mixture was maintained at $-70^{\circ} \mathrm{C}$ for 1 h and allowed to warm to room temperature (30 min). The solution was poured into saturated potassium sodium tartrate (30 ml) and stirred vigorously for 30 min . Extraction with chloroform ($3 \times 15 \mathrm{ml}$), drying $\left(\mathrm{MgSO}_{4}\right)$ of the combined organic extracts, concentration under reduced pressure and crystallisation of the residue from ethyl acetate-hexane gave the ($1 R, 3 S$)-(+)-lactol $23(220 \mathrm{mg}, 95 \%)$ as colourless needles, $\mathrm{mp} 156-159{ }^{\circ} \mathrm{C}[(\pm)-$ form, $\left.\mathrm{mp} 161-163{ }^{\circ} \mathrm{C}\right] ;[a]_{\mathrm{D}}+8.24\left(c 1.00, \mathrm{CHCl}_{3}\right)$ (Found: C, 37.4; H, 3.4. $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{O}_{3}$ requires $\left.\mathrm{C}, 37.5 ; \mathrm{H}, 3.4 \%\right)$. $v_{\text {max }}$ $3324 \mathrm{br}, 2961,1453,1172,1041,991 \mathrm{~cm}^{-1}[(\pm$-form, 3363 br , 2923, 1453, 1416, 1166, 1067, $\left.1027 \mathrm{~cm}^{-1}\right] . \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.40$ $(3 \mathrm{H}, \mathrm{d}, J 6.1 \mathrm{~Hz}, 3-\mathrm{Me}), 2.35\left(1 \mathrm{H}, \mathrm{dd}, J 17.4\right.$ and $\left.11.4 \mathrm{~Hz}, \mathrm{H}_{a x} 4\right)$, $2.76\left(1 \mathrm{H}\right.$, dd, $J 17.4$ and $\left.3.3 \mathrm{~Hz}, \mathrm{H}_{e q} 4\right), 2.96(1 \mathrm{H}$, br d, $J 3.6 \mathrm{~Hz}$, $\mathrm{OH}), 3.94(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.43(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 6.16(1 \mathrm{H}, \mathrm{d}, J 3.6$ $\mathrm{Hz}, \mathrm{H} 1), 7.75(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6) . \delta_{\mathrm{C}}(100 \mathrm{MHz}) 21.1$ (3-Me), $35.9(\mathrm{C} 4)$, 61.8, 62.4, 88.5 (C1), 115.1, 119.4, 132.1, 135.1, 135.9 and 154.2 (all Ar). Mass spectrum (EI) $m / z 354\left\{[\mathrm{M}]^{+},{ }^{81} \mathrm{Br}_{2}(14 \%)\right\}, 352$ $\left\{[\mathrm{M}]^{+},{ }^{81} \mathrm{Br} /{ }^{79} \mathrm{Br}(31)\right\}, 350\left\{[\mathrm{M}]^{+},{ }^{79} \mathrm{Br}_{2}(19)\right\}, 335$ (22), 310 (43), 308 (36), 293 (20), 292 (39), 290 (31), 86 (55), 84 (100), 77 (25), 71 (21).($1 S, 3 S$)-5,7-Dibromo-1-hydroxy-8-methoxy-3-methyl-3,4-dihydro-1H-2-benzopyran 26. A solution of the $(1 R, 3 S)-(+)$ lactol 23 in CDCl_{3} was maintained at $20^{\circ} \mathrm{C}$ for 5 days after which time the ${ }^{1} \mathrm{H}$ NMR spectrum revealed the presence of residual lactol 23 (30%) and the title compound 26 (70%). $\delta_{\mathrm{H}}(400 \mathrm{MHz})$ (epimer 26 only) $1.50(3 \mathrm{H}, \mathrm{d}, J 6.1 \mathrm{~Hz}, 3-\mathrm{Me})$, $2.41\left(1 \mathrm{H}, \mathrm{dd}, J 17.3\right.$ and $\left.11.7 \mathrm{~Hz}, \mathrm{H}_{a x} 4\right), 2.83(1 \mathrm{H}, \mathrm{dd}, J 17.3$ and $\left.3.7 \mathrm{~Hz}, \mathrm{H}_{e q} 4\right), 3.84(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.67(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 6.25(1 \mathrm{H}, \mathrm{s}$, $\mathrm{H} 1), 7.71(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6)$.
(S)-(+)-5,7-Dibromo-8-methoxy-3-methyl-3,4-dihydro-1 \mathbf{H}-2benzopyran 24. Method 1 . To a stirred solution of the $(1 R, 3 S)$ -$(+)$-lactol $23(216 \mathrm{mg}, 0.614 \mathrm{mmol})$ and sodium borohydride ($232 \mathrm{mg}, 6.1 \mathrm{mmol}$) in tetrahydrofuran (10 ml) was added trifluoroacetic acid $(1.5 \mathrm{ml})$ and the mixture was heated at $30{ }^{\circ} \mathrm{C}$ for 1 h . Dilution with water (10 ml), extraction with chloroform ($3 \times 10 \mathrm{ml}$), drying $\left(\mathrm{MgSO}_{4}\right)$ of the combined organic extracts and concentration under reduced pressure gave an oil that was further purified by flash vacuum pad chromatography (etherlight petroleum 1:2, $R_{\mathrm{F}} 0.60$). Crystallisation from etherhexane gave the title compound $\mathbf{2 4}$ ($190 \mathrm{mg}, 92 \%$) as colourless needles, mp 73-75 ${ }^{\circ} \mathrm{C}\left[(\pm)\right.$-form, mp $\left.74-75^{\circ} \mathrm{C}\right] ;[a]_{\mathrm{D}}+85.8$ (c 1.00, CHCl_{3}) (Found: C, 39.4; H, 3.6. $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{Br}_{2}$ requires C, $39.3 ; \mathrm{H}, 3.6 \%)$. $v_{\max } 2962,2926,1449,1418,1115,1036 \mathrm{~cm}^{-1}$ [\pm)-form, 2959, 2918, 1447, $1035 \mathrm{~cm}^{-1}$]. $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.38$ $(3 \mathrm{H}, \mathrm{d}, J 6.1 \mathrm{~Hz}, 3-\mathrm{Me}), 2.44\left(1 \mathrm{H}, \mathrm{dd}, J 17.2\right.$ and $\left.10.6 \mathrm{~Hz}, \mathrm{H}_{a x} 4\right)$, $2.71\left(1 \mathrm{H}, \mathrm{dd}, J 17.2\right.$ and $\left.3.3 \mathrm{~Hz}, \mathrm{H}_{e q} 4\right), 3.70(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 3.79$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.66\left(1 \mathrm{H}, \mathrm{d}, J 16.3 \mathrm{~Hz}, \mathrm{H}_{a x} 1\right), 4.97(1 \mathrm{H}, \mathrm{d}, J 16.3$ $\left.\mathrm{Hz}, \mathrm{H}_{e q} 1\right), 7.63(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6) . \delta_{\mathrm{C}}(100 \mathrm{MHz}) 21.4(3-\mathrm{Me}), 36.3$ (C4), 60.4 (OMe), 64.7 (C1), 70.6 (C3), 114.4, 119.8, 132.3, 133.8, 134.5 and 152.1 (all Ar). Mass spectrum (EI) m/z 306 $\left\{\left[\mathrm{M}-\mathrm{CH}_{3} \mathrm{OH}\right]^{+},{ }^{81} \mathrm{Br}_{2}(72 \%)\right\}, 304\left\{\left[\mathrm{M}-\mathrm{CH}_{3} \mathrm{OH}\right]^{+},{ }^{81} \mathrm{Br} /{ }^{/ 9} \mathrm{Br}\right.$ (100) $\}, 302\left\{\left[\mathrm{M}-\mathrm{CH}_{3} \mathrm{OH}\right]^{+},{ }^{79} \mathrm{Br}_{2}(44)\right\}, 291$ (54), 289 (100), 287 (51), 277 (23), 276 (23), 263 (29), 251 (73), 250 (30), 248 (47), 246 (24), 169 (30), 167 (24), 116 (28), 115 (22), 103 (26), 102 (27), 89 (23), 88 (21), 86 (23), 84 (21), 77 (31), 75 (64), 74 (42), 63 (26), 62 (21).

Method 2. To a solution of the $(1 R, 3 S)$-(+)-lactol 23 $(216 \mathrm{mg}, 0.614 \mathrm{mmol})$ in dichloromethane $(30 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added trifluoroacetic acid ($141 \mu \mathrm{l}, 1.84 \mathrm{mmol}$) and the solution
was stirred for 15 min . Triethylsilane ($294 \mu \mathrm{l}, 1.84 \mathrm{mmol}$) was added and the mixture was allowed to warm slowly to room temperature (1 h), stirred for a further 45 min and water (20 ml) was added. The product was extracted into chloroform ($3 \times 15 \mathrm{ml}$) and the combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Flash vacuum pad chromatography (ether-light petroleum $1: 2, R_{\mathrm{F}} 0.60$) of the residue gave the $(S)-(+)$-pyran 24 ($202 \mathrm{mg}, 98 \%$) identical in all respects to the product described above.
(S)-(+)-5,7-Dibromo-8-hydroxy-3-methyl-3,4-dihydro-1 $\mathbf{H - 2}$ -
benzopyran 25. To a solution of dibenzyl diselenide (47 mg , $0.138 \mathrm{mmol})$ in dimethylformamide (2 ml) was added sodium borohydride ($40 \mathrm{mg}, 1.06 \mathrm{mmol}$). After 15 min a solution of the $(S)-(+)$-methyl ether 24 ($67 \mathrm{mg}, 0.199 \mathrm{mmol}$) in dimethylformamide $(0.5 \mathrm{ml})$ was added and the mixture was heated under reflux for 1.5 h . After cooling to room temperature the mixture was diluted with water (15 ml), acidified with dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and the product was extracted into ethyl acetate $(3 \times$ $10 \mathrm{ml})$. The combined organic extracts were washed sequentially with brine $(3 \times 10 \mathrm{ml})$ and water $(3 \times 20 \mathrm{ml})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration under reduced pressure followed by flash vacuum pad chromatography (dichloromethane, $R_{\mathrm{F}} 0.40$) and crystallisation from dichloromethane gave the $(S)-(+)-$ phenol $25(55 \mathrm{mg}, 86 \%)$ as colourless needles, $\mathrm{mp} 139-141^{\circ} \mathrm{C}$ $\left[(\pm)\right.$-form, mp 140-141 $\left.{ }^{\circ} \mathrm{C}\right] ;[a]_{\mathrm{D}}+101$ (c 1.00, CHCl_{3}) (Found: M^{+}, 319.9040, $\mathrm{C}_{10} \mathrm{H}_{10}{ }^{99} \mathrm{Br}_{2} \mathrm{O}_{2}$ requires M^{+}, 319.9049). $v_{\text {max }}$ $3409 \mathrm{br}, 1435,1425,1139,1111,1087,1050 \mathrm{~cm}^{-1}[(\pm)$-form, $\left.3397 \mathrm{br}, 1437,1140,1111,1083,1048 \mathrm{~cm}^{-1}\right] . \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.38$ $(3 \mathrm{H}, \mathrm{d}, J 6.3 \mathrm{~Hz}, 3-\mathrm{Me}), 2.41\left(1 \mathrm{H}, \mathrm{dd}, J 17.2\right.$ and $\left.10.6 \mathrm{~Hz}, \mathrm{H}_{a x} 4\right)$, $2.72\left(1 \mathrm{H}, \mathrm{dd}, J 17.2\right.$ and $\left.2.0 \mathrm{~Hz}, \mathrm{H}_{e q} 4\right), 3.71(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 4.62$ $\left(1 \mathrm{H}, \mathrm{d}, J 16.0 \mathrm{~Hz}, \mathrm{H}_{a x} 1\right), 4.94\left(1 \mathrm{H}, \mathrm{d}, J 16.0 \mathrm{~Hz}, \mathrm{H}_{e q} 1\right), 5.50(1 \mathrm{H}$, br s, OH), $7.54(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6) . \delta_{\mathrm{C}}(100 \mathrm{MHz}) 21.4$ (3-Me), 36.2 (C4), $64.6(\mathrm{C} 1), 70.4(\mathrm{C} 3), 107.4,115.1,125.1,131.7,134.5$ and 147.1 (all Ar). Mass spectrum (EI) $m / z 324\left\{[\mathrm{M}]^{+},{ }^{81} \mathrm{Br}_{2}(11 \%)\right\}$, $322\left\{[\mathrm{M}]^{+},{ }^{81} \mathrm{Br} /{ }^{79} \mathrm{Br}(25 \%)\right\}, 320\left\{[\mathrm{M}]^{+},{ }^{79} \mathrm{Br}_{2}(13 \%)\right\}, 280(65)$, 278 (100), 276 (55), 91 (31), 90 (24), 89 (25).
(\pm)-4,6-Dibromo-2-bromomethyl-3-(2-hydroxypropyl)-1hydroxybenzene 27 from reaction of (\pm)-5,7-dibromo-8-methoxy-3-methyl-3,4-dihydro-1 H-2-benzopyran 24 with boron tribromide. To the (\pm)-pyran $24(43 \mathrm{mg}, 0.128 \mathrm{mmol})$ in dichloromethane $(3 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added boron tribromide ($96 \mathrm{mg}, 0.383 \mathrm{mmol}$) in dichloromethane $(0.5 \mathrm{ml})$. The reaction mixture was allowed to warm slowly to room temperature and stirred overnight. Dilution with water (10 ml) and extraction with dichloromethane ($3 \times 5 \mathrm{ml}$), drying $\left(\mathrm{MgSO}_{4}\right)$ of the combined organic phases and concentration under reduced pressure gave the (\pm)benzylic bromide $27(51.5 \mathrm{mg}, 100 \%)$ as an oil that was not purified further. $v_{\text {max }} 3493,1434,1303,1262,1209,1145,738$ $\mathrm{cm}^{-1} . \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.85\left(3 \mathrm{H}, \mathrm{d}, J 6.7 \mathrm{~Hz}, \mathrm{H}_{3} 3^{\prime}\right), 3.31(1 \mathrm{H}, \mathrm{dd}$, $J 15.0$ and $\left.5.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}} 1^{\prime}\right), 3.40\left(1 \mathrm{H}, \mathrm{dd}, J 15.0\right.$ and $\left.9.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}} 1^{\prime}\right)$, $4.55\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime}\right), 4.80\left(1 \mathrm{H}, \mathrm{d}, J 10.5 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{Br}\right), 4.86(1 \mathrm{H}$, d, $\left.J 10.5 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{b}} \mathrm{Br}\right), 5.85(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 7.68(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 5)$. $\delta_{\mathrm{C}}(100 \mathrm{MHz}) 25.9,26.4,42.7,48.4,109.7,116.1,126.3,135.2$, 138.0, 150.3. Mass spectrum (EI) $m / z 388\left\{\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+},{ }^{81} \mathrm{Br}_{3}\right.$ $(13 \%)\}, 386\left\{\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+},{ }^{81} \mathrm{Br}_{2} /{ }^{79} \mathrm{Br}(19 \%)\right\}, 384\left\{\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}\right.$, $\left.{ }^{81} \mathrm{Br}^{/{ }^{9}} \mathrm{Br}_{2}(11 \%)\right\}, 382\left\{\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+},{ }^{79} \mathrm{Br}_{3}(4 \%)\right\}, 307(36), 306$ (20), 305 (7), 304 (26), 303 (40), 279 (33), 226 (54), 225 (31), 224 (54), 223 (21), 146 (20), 145 (97), 144 (35), 117 (23), 116 (26), 115 (39), 91 (22), 90 (36), 82 (96), 81 (43), 80 (100), 79 (40), 75 (34), 74 (21), 72 (31), 63 (35).
(S)-(+)-7-Bromo-3-methyl-3,4-dihydro-1 H-2-benzopyran-5,8dione 5. To a solution of the $(S)-(+)$-phenol $25(55 \mathrm{mg}, 0.171$ mmol) in acetonitrile (7 ml) was added a solution of cerium(Iv) ammonium nitrate $[280 \mathrm{mg}, 0.511 \mathrm{mmol}$ in water $(1.3 \mathrm{ml})$]. The solution was stirred at room temperature for 30 min , diluted with brine (10 ml) and extracted with chloroform
$(3 \times 6 \mathrm{ml})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residual oil in dichloromethane was filtered through a short column $(0.5 \mathrm{~cm})$ of silica gel and the filtrate was concentrated to give the (S) -(+)-pyranobenzoquinone 5 ($41 \mathrm{mg}, 93 \%$) as a yellow crystalline solid, $\mathrm{mp} 100-103{ }^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}+195\left(c 0.64, \mathrm{CHCl}_{3}\right) . v_{\text {max }} 1658$, 1647, $1590,1225 \mathrm{~cm}^{-1}$. All other spectroscopic data were identical to those of the (\pm)-benzoquinone 5 obtained by oxidation of (\pm)-dimethoxypyran 21.
(\pm)-3,4-Dihydro-9-hydroxy-7-methoxy-3-methyl-1 H -naphtho-[2,3-c]pyran-5,10-dione 28. To the (\pm)-pyranobenzoquinone 5 ($9 \mathrm{mg}, 0.035 \mathrm{mmol}$) in toluene (1 ml) was added a solution of 1,3-dimethoxy-1-trimethylsilyloxybuta-1,3-diene $\mathbf{1 1}$ (18 mg , $0.089 \mathrm{mmol})$ in toluene $(0.5 \mathrm{ml})$ and the mixture was heated under reflux for 15 h . After cooling, the solution was concentrated under reduced pressure and filtered slowly through a short column of silica (dichloromethane-ethyl acetate 2:1+ 1% formic acid). The yellow fractions were combined, concentrated, further chromatographed ($50: 49: 1$ toluene-ethyl formate-formic acid, $R_{\mathrm{F}} 0.85$) and crystallised from dichloromethane-hexane to give the (\pm)-pyranonaphthoquinone $28(4 \mathrm{mg}, 42 \%)$ as yellow plates, $\mathrm{mp} 161-162{ }^{\circ} \mathrm{C}$ (Found: C, 65.7; H, 5.1. $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5}$ requires C, 65.7; H, 5.1\%). $v_{\text {max }} 3439 \mathrm{br}, 2981,1658,1641,1613,1311,1199,1160 \mathrm{~cm}^{-1}$. $\lambda_{\max }(\mathrm{EtOH}) 204(\log \varepsilon 4.49), 218$ (4.40), 268 (3.98), 285sh (3.78), 429 nm (3.46); (EtOH +1 drop $1 \mathrm{M} \mathrm{aq} . \mathrm{NaOH}) 209$ (log $\varepsilon 4.96), 231$ (4.32), $285(3.88), 527 \mathrm{~nm}(3.35) . \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.38$ $(3 \mathrm{H}, \mathrm{d}, J 6.1 \mathrm{~Hz}, 3-\mathrm{Me}), 2.28(1 \mathrm{H}$, dddd, $J 19.0,9.7,4.2$ and 2.6 $\left.\mathrm{Hz}, \mathrm{H}_{a x} 4\right)$, $2.72\left(1 \mathrm{H}, \mathrm{ddd}, J 19.0,3.5\right.$ and $\left.2.9 \mathrm{~Hz}, \mathrm{H}_{e q} 4\right), 3.67$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 3.90(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.51(1 \mathrm{H}$, ddd, $J 18.8,4.2$ and $\left.3.5 \mathrm{~Hz}, \mathrm{H}_{a x} 1\right)$, $4.84\left(1 \mathrm{H}, \mathrm{dd}, J 18.8\right.$ and $\left.2.6 \mathrm{~Hz}, \mathrm{H}_{e q} 1\right), 6.62(1 \mathrm{H}$, d, $J 2.4 \mathrm{~Hz}, \mathrm{H} 8), 7.19(1 \mathrm{H}, \mathrm{d}, J 2.4 \mathrm{~Hz}, \mathrm{H} 6), 12.13(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$. $\delta_{\mathrm{C}}(100 \mathrm{MHz}) 21.2(3-\mathrm{Me})$, $29.5(\mathrm{C} 4), 56.0(\mathrm{OMe})$, $63.0(\mathrm{Cl})$, 69.6 (C3), 106.0, 108.1, 109.1, 133.4 (C5a), 142.3, 142.8, 164.3, 166.0, 182.9 (C5), 186.7 (C10). Mass spectrum (EI) $\mathrm{m} / \mathrm{z} 274$ ($\mathrm{M}^{+}, 100 \%$), 245 (31), 231 (25), 230 (26), 202 (27), 201 (28), 108 (22), 72 (24), 71 (30).

1-Methoxy-1,3-bis(trimethylsilyloxy)buta-1,3-diene12. To a solution of LDA [prepared from diisopropylamine $(9.15 \mathrm{~g}$, 90 mmol) in tetrahydrofuran (100 ml) and n-butyllithium $\left(60.0 \mathrm{ml}, 1.5 \mathrm{M}\right.$ in hexane, 90 mmol) at $0{ }^{\circ} \mathrm{C}$, then cooled to $-78{ }^{\circ} \mathrm{C}$] was added methyl acetoacetate ($10 \mathrm{~g}, 86 \mathrm{mmol}$) dropwise over 1 h . After a further 45 min chlorotrimethylsilane ($11.2 \mathrm{~g}, 103 \mathrm{mmol}$) was added at $-78^{\circ} \mathrm{C}$ and the solution was allowed to warm to room temperature (2 h), filtered through Celite ${ }^{\circledR}$ and concentrated under reduced pressure. The residual oil was diluted with dry pentane (10 ml), filtered through Celite ${ }^{\circledR}$, and the filtrate was concentrated and the residual oil distilled to give methyl (E)-3-trimethylsilyloxybut-2-enoate ($9.69 \mathrm{~g}, 60 \%$) as a colourless liquid, bp $70-72^{\circ} \mathrm{C} / 8 \mathrm{mmHg}$ (lit. ${ }^{23}$ $\left.59-61^{\circ} \mathrm{C} / 2.0 \mathrm{mmHg}\right) . v_{\text {max }} 2951,1711,1618,1136,1037,846$ $\mathrm{cm}^{-1} \cdot \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.26\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 2.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} 4\right), 3.65$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $5.12(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 2) . \delta_{\mathrm{C}}(75 \mathrm{MHz}) 0.16,20.7,50.6$, 99.3, 168.3, 169.9.

To a solution of LDA (22.4 mmol , prepared as described above) was added a solution of methyl (E)-3-trimethylsilyl-oxybut-2-enoate ($4.0 \mathrm{~g}, 21.4 \mathrm{mmol}$) in tetrahydrofuran (4 ml) over 15 min . After a further 45 min chlorotrimethylsilane (2.78 $\mathrm{g}, 25.6 \mathrm{mmol}$) was added at $-78{ }^{\circ} \mathrm{C}$ and the solution was allowed to warm to room temperature (2 h) and concentrated under reduced pressure. The residual oil was diluted with pentane (40 ml), filtered through Celite ${ }^{\circledR}$, concentrated and distilled (Kügelrohr) to give the diene 12 ($4.28 \mathrm{~g}, 77 \%$), bp $55-$ $60^{\circ} \mathrm{C} / 0.5 \mathrm{mmHg}$ (lit. ${ }^{21} 56-58{ }^{\circ} \mathrm{C} / 2.0 \mathrm{mmHg}$). $v_{\text {max }} 2956,1647$, $1250,1018,844 \mathrm{~cm}^{-1} . \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.21$ and 0.24 (each $9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiMe}_{3}\right), 3.55(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.94\left(1 \mathrm{H}, \mathrm{d}, J 1.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}} 4\right), 4.14$ $\left(1 \mathrm{H}, \mathrm{d}, J 1.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}} 4\right)$, $4.47(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 2) . \delta_{\mathrm{C}}(75 \mathrm{MHz}) 0.20,0.44$, $54.9,77.5,89.2,153.3,158.6$.
(\boldsymbol{S})-(+)-3,4-Dihydro-7,9-dihydroxy-3-methyl-1 H -naphtho-[2,3-c]pyran-5,10-dione 29. To the (S)-(+)-pyranobenzoquinone $5(42 \mathrm{mg}, 0.163 \mathrm{mmol})$ in toluene $(1.5 \mathrm{ml})$ was added 1-methoxy-1,3-bis(trimethylsilyloxy)buta-1,3-diene 12 (106 mg , 0.407 mmol) in toluene (0.5 ml). The mixture was heated at reflux for 3 h and allowed to cool to room temperature. Silica (200 mg) was added and the solution was stirred for a further 30 min . After removal of the solvent under reduced pressure the residue was filtered slowly through a short column of silica (dichloromethane-ethyl acetate $1: 1+1 \%$ formic acid). The yellow fractions were combined, concentrated, filtered through Sephadex LH-20 with dichloromethane-methanol 1:1 as eluant and crystallised from chloroform to give the (S)-(+)pyranonaphthoquinone 29 ($31 \mathrm{mg}, 73 \%$) as yellow needles, mp $171-173{ }^{\circ} \mathrm{C}$ (decomp.) $\left[\left(\pm\right.\right.$)-form, $\mathrm{mp} 179-183{ }^{\circ} \mathrm{C}$ (decomp.)]; $[a]_{\mathrm{D}}+160(c 0.28, \mathrm{MeOH}) \cdot v_{\text {max }} 3421 \mathrm{br}, 1639,1614,1319,1167$, $1153 \mathrm{~cm}^{-1}[(\pm)$-form, $3414 \mathrm{br}, 1638,1613,1318,1167,1153$ $\left.\mathrm{cm}^{-1}\right] . \lambda_{\text {max }}(\mathrm{EtOH}) 219(\log \varepsilon 4.33), 270$ (4.02), 290 (3.92), 429 nm (3.39); ($\mathrm{EtOH}+1$ drop 1 M aq. NaOH) 208 ($\log \varepsilon 4.76$), 232 (4.20), 294 (3.99), 395 (2.37), $530 \mathrm{~nm}(3.25) . \delta_{\mathrm{H}}(400 \mathrm{MHz}$, d_{6}-acetone) $1.30(3 \mathrm{H}, \mathrm{d}, J 6.1 \mathrm{~Hz}, 3-\mathrm{Me}), 2.12$ (1 H , dddd, $J 18.8$, $10.0,4.1$ and $\left.2.5 \mathrm{~Hz}, \mathrm{H}_{a x} 4\right), 2.64(1 \mathrm{H}$, ddd, $J 18.8,3.6$ and 2.9 $\left.\mathrm{Hz}, \mathrm{H}_{e q} 4\right), 3.67(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 4.42(1 \mathrm{H}, \mathrm{ddd}, J 18.6,4.1$ and 3.6 $\mathrm{Hz}, \mathrm{H}_{a x} 1$), $4.69\left(1 \mathrm{H}, \mathrm{dd}, J 18.6\right.$ and $\left.2.5 \mathrm{~Hz}, \mathrm{H}_{e q} 1\right), 6.54(1 \mathrm{H}, \mathrm{d}$, $J 2.3 \mathrm{~Hz}, \mathrm{H} 8), 7.01(1 \mathrm{H}, \mathrm{d}, J 2.3 \mathrm{~Hz}, \mathrm{H} 6), 10.01(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $7-\mathrm{OH}), 12.05(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{OH}) . \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, d_{6}\right.$-acetone) 21.4 (3-Me), 30.1 (C4), 63.3 (C1), 70.0 (C3), 108.1 (C8), 108.9 (C6), 109.3 (C9a), 134.8 (C5a), 142.8 (C4a/10a), 143.4 (C4a/10a), 165.1 (C9), 165.4 (C7), 183.2 (C5), 187.6 (C10). Mass spectrum (EI) m/z $260\left(\mathrm{M}^{+}, 28 \%\right), 86$ (33), 84 (54), 71 (100), 70 (26), 69 (56).
($1 R, \mathbf{3 S}$)-(-)-Thysanone 1. To the $(S)-(+)$-pyranonaphthoquinone $29(15 \mathrm{mg}, 0.057 \mathrm{mmol})$ in carbon tetrachloride (14 ml) was added bromine ($9.2 \mathrm{mg}, 0.056 \mathrm{mmol}$) in carbon tetrachloride (1.1 ml) and the solution was irradiated with a 375 W tungsten lamp for 30 min . After removal of solvent under reduced pressure the resultant yellow oil was dissolved in tetrahydrofuran (6 ml) and water (2 ml) and stirred at room temperature for 1 h . Dilution with water $(10 \mathrm{ml})$ followed by extraction with chloroform ($3 \times 5 \mathrm{ml}$), drying $\left(\mathrm{MgSO}_{4}\right)$ of the combined organic extracts and concentration under reduced pressure gave a yellow solid that was purified by preparative thin-layer chromatography ($50: 49: 1$ toluene-ethyl formateformic acid, $R_{\mathrm{F}} 0.40$) and crystallised from methanol to give ($1 R, 3 S$)-(-)-thysanone $\mathbf{1}(8.3 \mathrm{mg}, 85 \%$) as yellow needles, $\mathrm{mp} 197-198{ }^{\circ} \mathrm{C}$ (decomp.) [lit. ${ }^{3} \mathrm{mp} 205-206{ }^{\circ} \mathrm{C}$ (decomp.)]. $[a]_{\mathrm{D}}-29.7$ (c $\left.0.002, \mathrm{MeOH}\right)\left\{\right.$ lit. $\left.^{3}[a]_{\mathrm{D}}+29(c 1.62, \mathrm{MeOH})\right\}$. CD $257(\Delta \varepsilon+2.8), 296(-3.1), 417(-0.1), 445 \mathrm{~nm}(-0.3)$ (Found: $\mathrm{M}^{+}, 276.0625, \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{6}$ requires $\mathrm{M}^{+}, 276.0634$). $v_{\text {max }}$ $3411 \mathrm{br}, 2924,1647,1610,1390,1323,1274,1155,1075 \mathrm{~cm}^{-1}$ $[(\pm)$-form, $3409 \mathrm{br}, 2925,1647,1611,1390,1322,1276,1172$, $\left.1076 \mathrm{~cm}^{-1}\right] . \lambda_{\text {max }}(\mathrm{MeOH}) 219$ ($\log \varepsilon 4.33$), 263 (4.04), 288sh (3.94), $421 \mathrm{~nm}(3.38) . \delta_{\mathrm{H}}$ ($400 \mathrm{MHz}, d_{6}$-acetone) see Table 2. $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.40(3 \mathrm{H}, \mathrm{d}, J 6.4 \mathrm{~Hz}, 3-\mathrm{Me}), 2.24$ $\left(1 \mathrm{H}, \mathrm{dd}, J 19.6\right.$ and $\left.11.1 \mathrm{~Hz}, \mathrm{H}_{a x} 4\right), 2.75(1 \mathrm{H}, \mathrm{dd}, J 19.6$ and $\left.3.2 \mathrm{~Hz}, \mathrm{H}_{e q} 4\right), 4.36(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 6.05(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 1), 6.63(1 \mathrm{H}, \mathrm{d}$, $J 2.5 \mathrm{~Hz}, \mathrm{H} 8), 7.11(1 \mathrm{H}, \mathrm{d}, J 2.5 \mathrm{~Hz}, \mathrm{H} 6), 12.10(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{OH})$. $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, d_{6}\right.$-acetone) see Table 2 . Mass spectrum (EI) $m / z 276$ (${ }^{+}$, 13\%), 260 (37), 259 (26), 258 (100), 257 (24), 256 (21), 243 (22), 232 (24), 231 (20), 230 (25), 229 (24), 215 (22), 204 (20), 137 (26), 128 (30), 115 (21), 83 (24), 81 (24), 79 (20), 77 (31), 73 (28), 71 (43), 70 (25), 69 (83), 67 (27), 65 (24), 64 (34), 63 (25), 60 (35), 57 (63), 56 (24), 55 (70), 53 (27), 51 (37).
($1 R, 3 S$)-(-)-Thysanone methyl acetal 2. To ($1 R, 3 S$)-(-)thysanone $\mathbf{1}(8.2 \mathrm{mg}, 0.028 \mathrm{mmol})$ in methanol (6 ml) was added a trace of concentrated sulfuric acid and the mixture was stirred at room temperature for 16 h . Water (15 ml) was added and the product was extracted into chloroform $(3 \times 5 \mathrm{ml})$ and the
combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The resultant yellow solid was purified by preparative thin-layer chromatography ($50: 49: 1$ toluene-ethyl formate-formic acid, $R_{\mathrm{F}} 0.60$) and crystallised from methanol to give ($1 R, 3 S$)-(-)-thysanone methyl acetal 2 ($4.7 \mathrm{mg}, 55 \%$) as yellow needles, $\mathrm{mp} 202-205^{\circ} \mathrm{C}$ (decomp.) [lit. ${ }^{3}$ $\mathrm{mp} 212-215{ }^{\circ} \mathrm{C}$ (decomp.)]. [$\left.\alpha\right]_{\mathrm{D}}-93.6$ (c 0.002, MeOH). CD $253(\Delta \varepsilon+5.7), 292(-5.8), 406(+0.6), 462 \mathrm{~nm}(-0.4)$ (Found: $\mathrm{M}^{+}, 290.0795, \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{6}$ requires $\mathrm{M}^{+}, 290.0790$). $v_{\text {max }} 3425 \mathrm{br}$, 2923, 1647, 1614, 1393, 1324, 1275, 1176, 1093, $1050 \mathrm{~cm}^{-1} . \lambda_{\text {max }}$ (MeOH) $219(\log \varepsilon 4.31), 267$ (3.92), 288sh (3.79), 435 nm (3.30). $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, d_{6}\right.$-acetone) $1.33(3 \mathrm{H}, \mathrm{d}, J 6.1 \mathrm{~Hz}, 3-\mathrm{Me})$, $2.14\left(1 \mathrm{H}, \mathrm{dd}, J 19.4\right.$ and $\left.11.0 \mathrm{~Hz}, \mathrm{H}_{a x} 4\right), 2.69(1 \mathrm{H}, \mathrm{dd}, J 19.4$ and $\left.3.5 \mathrm{~Hz}, \mathrm{H}_{e q} 4\right), 3.49(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}), 4.14(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 5.43(1 \mathrm{H}$, s, H1), $6.61(1 \mathrm{H}, \mathrm{d}, J 2.2 \mathrm{~Hz}, \mathrm{H} 8), 7.07(1 \mathrm{H}, \mathrm{d}, J 2.2 \mathrm{~Hz}, \mathrm{H} 6)$, $12.21(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{OH})$. Mass spectrum (EI) $\mathrm{m} / \mathrm{z} 290\left(\mathrm{M}^{+}, 27 \%\right)$, 260 (50), 259 (100), 231 (40), 216 (27), 111 (22), 109 (24), 97 (32), 95 (35), 85 (24), 83 (38), 81 (41), 79 (21), 77 (23), 71 (60), 70 (30), 69 (89), 67 (39), 57 (86), 56 (33), 55 (93), 53 (21), 51 (22).

Thysanone 1 from Thysanophora penicilloides. A sample of thysanone isolated from Thysanophora penicilloides was generously supplied by Merck Sharp \& Dohme Research Laboratories, Rahway, New Jersey 07065, USA. In our hands, the following spectroscopic data were recorded: $[a]_{\mathrm{D}}-49.6$ (c $0.002, \mathrm{MeOH}) . \mathrm{CD} 259(\Delta \varepsilon+3.8), 296(-3.7), 407(+0.3)$, $453 \mathrm{~nm}(-0.1) . \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, d_{6}\right.$-acetone) $1.29(3 \mathrm{H}, \mathrm{d}, J 6.3 \mathrm{~Hz}$, $3-\mathrm{Me}), 2.10\left(1 \mathrm{H}, \mathrm{dd}, J 19.3\right.$ and $\left.11.4 \mathrm{~Hz}, \mathrm{H}_{a x} 4\right), 2.68(1 \mathrm{H}, \mathrm{dd}$, $J 19.3$ and $\left.3.4 \mathrm{~Hz}, \mathrm{H}_{e q} 4\right), 4.32(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 5.91(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 1)$, $6.61(1 \mathrm{H}, \mathrm{d}, J 2.5 \mathrm{~Hz}, \mathrm{H} 8), 7.07(1 \mathrm{H}, \mathrm{d}, J 2.5 \mathrm{~Hz}, \mathrm{H} 6), 12.26$ $(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{OH})\left[\right.$ lit. ${ }^{3} \delta_{\mathrm{H}}\left(d_{6}\right.$-acetone) see Table 1$]$.

The methyl acetal of natural thysanone. A sample of thysanone methyl acetal was kindly supplied by Merck Sharp \& Dohme Laboratories. In our hands the following spectroscopic data were obtained: $[a]_{\mathrm{D}}-57.8$ ($\left.c 0.002, \mathrm{MeOH}\right)$. CD $250(\Delta \varepsilon$ $+, 3.9), 291(-4.3), 403(+0.5), 462 \mathrm{~nm}(-0.3) . \delta_{\mathrm{H}}(400 \mathrm{MHz}$, d_{6}-acetone) $1.33(3 \mathrm{H}, \mathrm{d}, J 6.4 \mathrm{~Hz}, 3-\mathrm{Me}), 2.14(1 \mathrm{H}, \mathrm{dd}, J 19.5$ and $\left.11.0 \mathrm{~Hz}, \mathrm{H}_{a x} 4\right), 2.69\left(1 \mathrm{H}, \mathrm{dd}, J 19.5\right.$ and $\left.3.4 \mathrm{~Hz}, \mathrm{H}_{e q} 4\right), 3.49$ ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}), 4.14(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 5.43(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 1), 6.61(1 \mathrm{H}, \mathrm{d}$, $J 2.4 \mathrm{~Hz}, \mathrm{H} 8), 7.07(1 \mathrm{H}, \mathrm{d}, J 2.4 \mathrm{~Hz}, \mathrm{H} 6), 12.21(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{OH})$.

Acknowledgements

C. D. D. is grateful for a Sir John and Lady Higgins Research Scholarship; M. G. is thankful for continuing financial support
from the Australian Research Council. James Borg is acknowledged for some experimental support. We thank Dr S. B. Singh, Merck Sharp \& Dohme, for providing authentic samples of natural thysanone and its methyl acetal. The Department of Biochemistry and Molecular Biology, The University of Melbourne, kindly provided access to their CD spectrometer.

References and notes

1 For Part 67, see: M. Gill and P. M. Morgan, Arkivoc, 2001, 2, Part 5, (http://www.arkat.org/arkat/journal/issue11/ms5).
2 Preliminary communication: C. D. Donner and M. Gill, Tetrahedron Lett., 1999, 40, 3921.
3 S. B. Singh, M. G. Cordingley, R. G. Ball, J. L. Smith, A. W. Dombrowski and M. A. Goetz, Tetrahedron Lett., 1991, 32, 5279.
4 J. M. Gwaltney, Jr., in Viral Infection of Man: Epidemiology and Control, 2nd edn, ed. E. A. Evans, Plenum Publishing Co., New York, 1982, pp. 491-517.
5 C. Dimitriadis, M. Gill and M. F. Harte, Tetrahedron: Asymmetry, 1997, 8, 2153.
6 B. T. Golding, D. R. Hall and S. Sakrikar, J. Chem. Soc., Perkin Trans. 1, 1973, 1214.
7 A. S. Cotterill, M. Gill and N. M. Milanovic, J. Chem. Soc., Perkin Trans. 1, 1995, 1215.
8 J. Savard and P. Brassard, Tetrahedron, 1984, 40, 3455.
9 B. Simoneau and P. Brassard, Tetrahedron, 1988, 44, 1015; M. Gill, M. F. Harte and A. Ten, Aust. J. Chem., 2000, 53, 245.

10 D. W. Cameron, G. I. Feutrill, P. G. Griffiths and D. J. Hodder, J. Chem. Soc., Chem. Commun., 1978, 688; D. W. Cameron, C. Conn and G. I. Feutrill, Aust. J. Chem., 1981, 34, 1945.
11 G. A. Kraus, M. T. Molina and J. A. Walling, J. Org. Chem., 1987, 52, 1273.
12 R. L. Beddoes, J. M. Bruce, H. Finch, L. M. J. Heelam, I. D. Hunt and O. S. Mills, J. Chem. Soc., Perkin Trans. 1, 1981, 2670.
13 C. J. Burns, M. Gill and S. Saubern, Aust. J. Chem., 1991, 44, 1427.

14 T.-t. Li and Y. L. Wu, J. Am. Chem. Soc., 1981, 103, 7007.
15 A. J. Kirby, The Anomeric Effect and Related Stereoelectronic Effects at Oxygen, Springer-Verlag, New York, 1983.
16 K. A. Parker and J. J. Petraitis, Tetrahedron Lett., 1981, 22, 397.
17 I. Kawasaki, K. Matsuda and T. Kaneko, Bull. Chem. Soc. Jpn., 1971, 44, 1986.
18 E. Jung and M. A. Lyster, J. Org. Chem., 1977, 42, 3761.
19 J. F. W. McOmie and D. E. West, Org. Synth., 1973, Coll. Vol. V, 412.

20 R. H. Thomson, Naturally Occurring Quinones, 2nd edn, Academic Press, London, 1971.
21 K. Yamamoto, S. Suzuki and J. Tsuji, Chem. Lett., 1978, 649.
22 E. L. Patterson, W. W. Andres and N. Bohonos, Experientia, 1966, 22, 209.
23 S. Torkelson and C. Ainsworth, Synthesis, 1976, 722.

